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Abstract

LBM is a physically-based approach that simulates the microscopic
movement of fluid particles by simple, identical and local rules. We
accelerate the computation of the LBM on general-purpose graph-
ics hardware, by grouping particle packets into 2D textures and
mapping the Boltzmann equations completely to the rasterization
and frame buffer operations. We apply stitching and packing to
further improve the performance. In addition, we propose tech-
niques, namely range scaling and range separation, that systemati-
cally transform variables into the range required by graphics hard-
ware and thus prevent overflow. These approaches can be extended
to a compiler that automatically translates general calculations to
operations on graphics hardware.

Keywords: Graphics hardware, Lattice Boltzmann Method, flow
simulation.

1 Introduction

Simulations of fluid behavior are in great demand in film making, as
well as in visual simulations such as animation design, texture syn-
thesis, flight simulation, and scientific visualization. In Computa-
tional Fluid Dynamics (CFD), fluid properties, such as density and
velocity are typically described by the Navier-Stokes (NS) equa-
tions, which have nonlinear terms making them too expensive to
solve numerically in real time. Instead of calculating the macro-
scopic equations, we can simulate the linear, microscopic LBM
[1, 9, 11] to satisfy the NS equations. The fluid flow consists of
many tiny flow particles and the collective behavior of these mi-
croscopic particles results in the macroscopic dynamics of a fluid.
Since the macroscopic dynamics of fluid is insensitive to the under-
lying details in microscopic physics [?], this gives us the possibility
of using a simplified microscopic kinetic-type model to simulate its
movements.

The LBM can be understood as a Cellular Automata represent-
ing discrete packets moving on a discrete lattice at discrete time
steps. The calculation is performed on a regular grid. At each grid
cell, there are variables indicating the status of the grid point. All
the cells modify their status at each time step based on linear and
local rules. Although faster than other solutions to the NS equa-
tions, the computation of the LBM is still slow. The calculations at
each point are simple, but there is usually a large amount of cells.
Therefore, a practical use of the LBM typically demands parallel
supercomputers [9, 11].

Commodity graphics hardware can perform pixel-oriented op-
erations very efficiently. Not only the operations are pipelined in
dedicated hardware, but there are usually up to four color channels
and multiple pixel pipelines that essentially provide parallel pro-
cessing. The speed of graphics hardware doubles approximately
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every six months which is much faster than the improving rate of
CPU. Inspired by the performance of graphics hardware and the
resemblance in the computation pattern between the LBM and the
rasterization stage, we propose to accelerate the LBM on commod-
ity graphics hardware by storing packets of the LBM as textures
and translating the Boltzmann equations into rendering operations
of the texture units and the frame buffer. We further apply stitch-
ing to reduce the overhead of texture switching and packing to
reduce the memory requirement as well as to exploit parallelism
of the four color channels. In addition, we present range scaling
that transforms the range of arbitrary variables and any interme-
diate results to fulfill the requirement of graphics hardware. The
techniques guarantee no overflow no matter how the variables are
evaluated while the scaling factors are chosen to take the full pre-
cision of the hardware. We use LBM equations as an example to
show how the scaling is applied and observe only up to 1% of error.
In addition, the range separation proposed in this paper overcomes
the non-negative limits required in certain stages of the graphics
pipeline.

Although we focus on the LBM and its applications to visual
simulation of fluids and smoke, our approach is extendable to any
cellular-automata-typed calculations. We expect that the techniques
proposed in the paper, such as range scaling and range separation,
be developed into a compiler that automatically generates render-
ing instructions equivalent to various general computations with the
range of all variables and intermediate and final results properly
transformed.

The rest of the paper is organized as follows. First, we review
related work. In Section 3 we present range scaling and range sep-
aration which are critical components of our approach in accelerat-
ing general computations on graphics hardware. In Sections 4 and
5, after a brief introduction of the theory of the LBM, we present
our methods of mapping the LBM equations as multi-pass rasteri-
zation operations and how the range scaling is applied to the LBM.
In Section 6, we give the experimental results.

2 Related Work

Graphics hardware has been extended to various applications be-
yond its originally-expected usage. Examples include matrix mul-
tiplication [10], 3D convolution [6], morphological operations such
as dilation and erosion [7], computation of Voronoi diagrams and
proximity queries [4, 5], voxelization [2], algebraic reconstruction
[12], and volumetric deformation [16].

Graphics architecture, such as OpenGL, can be treated as a gen-
eral SIMD computer [13]. Various computations are implemented
as the operations of the texture mapping unit and the frame buffer.
Final results are obtained in one or more rendering passes. Both
Peercy et al. [13] and Proudfoot et al. [14] have developed lan-
guages for programmable procedural shading systems as well as
compilers that automatically generate instructions corresponding



To appear inThe Visual Computer

to rendering operations on graphics hardware. However, to apply
these ideas to other applications, the limited value range and ac-
curacy of graphics hardware have to be considered. Trendall et al.
[17] gave several formulas for scaled and biased functions whose
value ranges are within the limits and applied the method to the
computation of interactive caustics.

Some of the above applications scale and shift the variables in
their computations so that they fit into the value range of the graph-
ics hardware. Their scaling and shifting parameters are chosen ei-
ther trivially or empirically. The range scaling proposed in this pa-
per provides a systematic way for mapping general computations
onto graphics hardware which guarantees that all the inputs and
outputs as well as the intermediate results are not clamped by the
hardware, in addition to exploiting the hardware precision as much
as possible.

There are a few papers on accelerating flow visualization on
graphics hardware. Heidrich et al. [3] exploit pixel texture to com-
pute line integral convolution, which is a technique for visualizing
vector data. Jobard et al. [8] translate texture advection compu-
tations to frame buffer operations to accelerate the visualization of
the motion of 2D flows. Weiskopf et al. [19] extend Jobard et al.’s
work to 3D flows. They also take advantage of the newly available
OpenGL extensions, namely offset texture and dependent texture.
All these techniques are for the visualization of fluid with given
velocity fields. In contrast, this paper focuses on the simulation,
specifically the generation of the fields, such as velocity, that are
required for the visualization. By employing similar visualization
techniques, our approach can map the whole simulation and visu-
alization onto the graphics hardware without the need of transfer-
ring data back and force between the host memory and the graphics
memory. Harris et al [?] implement coupled map lattice (CML),
an variation of cellular automata, on graphics hardware, which has
similar motivation and applications to this paper. We expect our
work on LBM eventually result in a compiler of general computa-
tions to graphics hardware, therefore one of the focus of the paper is
how to systematically mapping general equations to rendering oper-
ations considering the range and precision limitation of the graphics
hardware. Besides, we propose techniques such as texture packing
and stitching to further accelerate the execution on hardware.

3 General Computations on Graphics
Hardware

We use the rasterization units (e.g., Nvidia’s register combiners)
and the frame buffer in graphics hardware to implement addi-
tion, subtraction and multiplication. Division and other more com-
plicated calculations are replaced with lookup tables storing pre-
computed values. Input values are stored in textures and output
values are either copied from the frame buffer to textures or written
directly to the textures with the render-to-texture extension.

Values in graphics hardware are clamped to either[0, 1] or
[−1, 1], depending on the stage of the graphics pipeline. There-
fore, we need to transform the value ranges of all the inputs and
outputs. Trendall et al. [17] also mapped the lower bound of the
range to 0 by biasing for better accuracy. In contrast, we generally
avoid introducing any bias during the mapping. (The reason is ex-
plained in section 3.2). That is, we only apply scaling to change the
numerical ranges.

Range scaling can be considered as a simulation of floating point
on fixed-point hardware, whereas floating point texture and frame
buffer have been suggested for future hardware [15]. However, even
if the support to floating point were available in the rasterization
stage of the graphics hardware, it would be significantly slower and
could take more texture memory than its fixed-point counter part.
The range scaling proposed in this paper makes no assumption of

the precision of the hardware.
We always prefer the rasterization units because they are more

flexible than the frame buffer. However, distributing certain oper-
ations to the frame buffer reduces the number of rendering passes
and the need of copying the frame buffer contents into textures.

3.1 Range Scaling

The scaling factors should be carefully selected so that no clamping
error occurs and the computation exploits the full precision of the
hardware. For any input or output functionf(x), we divide it with

its maximal absolute value and obtain a scaled functioñf(x), such
that:

fmaxf̃(x) = f(x) (1)

wherefmax = maxx(|f(x)|) which we refer to as the left-hand

scalar. Obviously,̃f(x) ∈ [−1, 1]. We then usẽf(x) throughout
the hardware pipeline.

We should also make sure that during the computation of̃f(x),
no intermediate result is clamped. We denoteU(f) as the maximal
absolute value of all intermediate results during the evaluation of
f(x), no matter what computation order is taken if the computation
contains multiple operations. It is easy to see thatU(f) ≥ fmax. If
we multiply 1/U(f) on the right-hand-side before computing, we
guarantee that no overflow occurs. We refer toU(f) as the right-
hand scalar.

If a functions(x) is a weighted sum of several other functions,

s(x) =
∑

i
kifi(x), we compute the scaled functioñs(x) as fol-

lows:

s̃(x) =
U(s)

smax

∑
i

kif
max
i

U(s)
f̃i(x) (2)

The left-hand scalar and the upper bound of the intermediate values
are computed as:

smax = max(
∑

i

kif
max
i (∃x, fi(x) > 0),∑

i

kif
max
i (∃x, fi(x) < 0)) (3)

U(s) = max(
∑

i

kiU(fi)(∃x, fi(x) > 0),∑
i

kiU(fi)(∃x, fi(x) < 0)) (4)

That is, eachf̃i(x) is scaled bykif
max
i /U(s) before summation.

We know |kif
max
i /U(s)| ≤ 1. The sum is then multiplied by

a constantU(s)/smax. Note thatU(s)/smax ≥ 1. To multiply
with a factor larger than 1, we have two choices: (1) utilizing the
output scale mapping of the register combiners; (2) applying mul-
tiplication and addition or using dot product.smax is obtained by
summing the maximal values of positive and negative entries sepa-
rately and selecting the sum with the larger absolute value.U(s) is
computed similarly. Sinces(x) may not reach the computed maxi-
mal valuesmax, it is better to replacesmax with the actual largest
absolute values̃max such thats̃max < smax. To measures̃max,
we implement a software-only version of the same calculations on
the CPU and feed into various input values.

If p(x) is the product of several functions,p(x) = k
∑

i
fi(x).

We have

p̃(x) =
U(p)

pmax
k
∏

i

fmax
i

U(fi)
f̃i(x) (5)
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where

pmax = k
∏

i

fmax
i (6)

U(p) = k
∏

i

U(fi) (7)

If the functiong(x) is an input for a rendering pass, we speculate
that U(g) = gmax. Apparently, if allfi(x) are inputs,pmax =
U(p) = k

∏
i
fmax

i .
In each rendering pass, the hardware performs a mix of additions

(subtractions) and multiplications1. We first obtain the absolute
maximal values of inputs either by prior knowledge or measure-
ment of software simulation on the CPU. Then, before evaluating
a functionf(x), we compute its left-hand and right-hand scalars
by grouping its right-hand side into sums and products and by re-
cursively applying Equations 3, 4, 6 and 7. Next, we divide the
right-hand side byU(f) and distributeU(f) to each input func-
tions according to Equations 2 and 5. All the scale coefficients of
the inputs are computed in software.

3.2 Range Separation

Conventional graphics hardware only supports a numerical range of
[0,1]. Recent OpenGL extensions, such as Nvidia’s register com-
biners, expand the range to [-1, 1] in the rasterization stage, whereas
the final combiner and the frame buffer are still limited to [0, 1].
Hence, negative values have to be transformed before they are sent
to the final combiner or the frame buffer. A solution is to apply bias
and scaling to transform the range to [0, 1] before entering the final
combiner stage and the frame buffer. However, it is then very diffi-
cult to utilize the final combiner or the frame buffer for multiplica-
tion or addition on the biased variables. Consequently, the number
of rendering passes and the times of backing-up the contents of the
frame buffer are likely to increase.

We propose to separate the positive and negative ranges and
avoid biasing as an alternative solution. Similar to other ap-
proaches, we scale all the variables to fit into the range of [-1, 1]
as the first step. If all the values of a variable are constantly non-
negative or non-positive, it is trivial to map them to [0, 1].

To handle a variable containing both positive and negative val-
ues, we divide the range of [-1, 1] into two parts, [-1, 0] and [0, 1].
For arbitrary functionf , we have:

f = [f ]+ + [f ]− = [f ]+ − [−f ]+ (8)

where[ ]+ and[ ]− denote the clamping to [0, 1] and [-1, 0], respec-
tively. Obviously, both[f ]+ and[−f ]+ contain only 0 or positive
values.

Let f andg be two functions. Addition (subtraction) , multipli-
cation (scalar and dot product) and division are then performed as
follows:

f + g = ([f ]+ + [g]+)− ([−f ]+ + [−g]+) (9)

fg = [f ]+[g]+ + [−f ]+[−g]+

−([f ]+[−g]+ + [−f ]+[g]+) (10)
f

g
=

fg

g2
(11)

Note that in Equation 11,g2 can be computed as:

g2 = ([g]+)2 + ([−g]+)2 (12)

1Other computations are implemented with lookup table, hence are
treated as inputs

Figure 1: The D3Q19 lattice geometry. The velocity directions of
the 18 moving packet distribution are shown as arrows.

Range separation introduces more calculations than the unsepa-
rated version, but recall that scaling and biasing requires additional
operations as well. In practice, we choose either biasing and scal-
ing or range separation depending on which can be executed in
fewer rendering passes and involves fewer texture units. We make a
choice considering also the fact that range separation provides one
additional bit of precision.

4 Lattice Boltzmann Method

Now, let’s review the principles of the lattice Boltzmann method
[1, 9, 11] and see what computations are needed for the simulation
of the LBM. The LBM consists of a regular grid and a set of packet
distribution values. Each packet distributionfqi corresponds to a
velocity direction vector−→eqi shooting from a node to its neighbor.
The indexqi describes the D-dimensional sub-lattice whereq is the
sub-lattice level andi enumerates the sub-lattice vectors. Figure 1
depicts a single node of the D3Q19 model (19 packets in 3D space),
while the left part of Figure 2 shows four grid nodes of the D2Q9
(9 packets in 2D space). The arrows in the figures represent the−→eqi

vectors.
The LBM updates the packet distribution values at each node

based on two rules: collision and propagation. Collision describes
the redistribution of packets at each local node. Propagation means
the packets move to the nearest neighbor along the velocity direc-
tions. These two rules can be described by the following equations:

collision : fnew
qi (−→x , t)− fqi(−→x , t) = Ωqi (13)

propagation : fqi(−→x +−→eqi, t + 1) = fnew
qi (−→x , t) (14)

whereΩ is a general collision operator. Since components of−→eqi

can only be choosen from{-1, 0, 1}, the propagation is local.
The density and velocity are calculated from the packet distribu-

tions as follows:

ρ =
∑

qi

fqi (15)

−→v =
1

ρ

∑
qi

fqi
−→eqi (16)

The collision operator is selected in a way that mass and mo-
mentum are conserved locally. Suppose that there is always a local

3



To appear inThe Visual Computer

equilibrium particle distributionfeq
qi dependent only on the con-

served quantitiesρ and−→v , then the collision step is changed to:

fnew
qi (−→x , t)− fqi(−→x , t) = − 1

τ
(fqi(−→x , t)− feq

qi (ρ,−→v )) (17)

whereτ is the relaxation time scale.feq
qi is decided by the following

equation:

feq
qi (ρ,−→v ) = ρ(Aq + Bq < −→eqi,−→v > +

Cq < −→eqi,−→v >2 +Dq < −→v ,−→v >) (18)

< −→x ,−→y > denotes the dot product between two vectors−→x and−→y .
The constantsAq to Dq depend on the employed lattice geometry.

The simulation of the LBM then proceeds as follows: (1) com-
pute density according to Equation 15; (2) compute velocity (Equa-
tion 16); (3) compute equilibrium distribution (Equation 18); (4)
update distributions by Equation 17 and go back to step (1). More
details on the LBM model can be found in [18].

5 Mapping LBM to Graphics Hardware

5.1 Algorithm Overview

To compute the LBM equations on graphics hardware, we divide
the LBM grid and group the packet distributionsfqi into arrays
according to their velocity directions. All the packet distributions
with the same velocity direction are grouped into the same array,
while keeping the neighboring relationship of the original model.
Figure 2 shows the division of a 2D model. We then store the arrays
as 2D textures. For a 2D model, all such arrays are naturally 2D,
while for a 3D model, each array forms a volume and is stored as a
stack of 2D textures. The idea of the stack of 2D textures is from 2D
texture-based volume rendering, but note that we don’t need three
replicated copies of the dataset.

= + +

+ + ...

Figure 2: Division of the D2Q9 model. Only 4 grids out of 9 are
shown. Packets are grouped according to their velocity directions.

All the other variables, the densityρ, the velocity−→v and the
equilibrium distributionsfeq

qi are stored similarly in 2D textures.
We project multiple textured rectangles with the color-encoded den-
sities, velocities and distributions. For convenience, the rectangles
are parallel to the viewing plane and are rendered orthogonally.
Therefore, the texture space has the same resolution as the image
space and the interpolation mode is set to nearest-neighbor.

As shown in Figure 3, the textures of the packet distributions are
the inputs. Density and velocity are then computed from the dis-
tribution textures. Next, the equilibrium distribution textures are
obtained from the densities and the velocities. According to the
propagation equation, new distributions are computed from the dis-
tributions and the equilibrium distributions. Finally, we apply the

boundary conditions and update the distribution textures. The up-
dated distribution textures are then used as inputs for the next sim-
ulation step.

Boundary condition

dist. density velocity
equili.
dist.

new
dist.

Propagation

Figure 3: The data flow of the hardware accelerated LBM compu-
tations.

To reduce the overhead of switching between textures, we stitch
multiple textures representing packet distributions with the same
velocity direction into one larger texture. The left part of Figure 5
shows an example, in which, every four slices are stitched into a
larger texture. The pipeline depicted in Figure 3 is then operated on
the stitched textures.

5.2 Propagation

According to Equation 14, each packet distribution having non-zero
velocity propagates to the neighboring grid every time step. Since
we group packets based on their velocity directions, the propagation
is accomplished by shifting distribution textures in the direction of
the associated velocity. We decompose the velocity into two parts,
the velocity component within the slice (in-slice velocity) and the
velocity component orthogonal to the slice (orthogonal velocity).
The propagation is done for the two velocity components indepen-
dently. To propagate in the direction of the in-slice velocity, we
simply translate the texture of distributions appropriately, as shown
in Figure 4.
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direction
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Figure 4: Propagation of the packet distributions along the direction
of the velocity component orthogonal to the slices.

If we don’t stitch multiple slices into one texture, the propaga-
tion in the direction of the orthogonal velocity is done simply by re-
naming the distribution textures. Because of the stitching, we need
to apply translation inside the stitched textures as well as copying
sub-textures to other stitched textures. Figure 5 shows the out-of
slice propagation for stitched slices. The indexed blocks denote the
slices storing packet distributions. The rectangles in thicker lines
mark the sub-textures that are propagated. For example, the sub-
texture composed of slices 1 to 3 is shifted down by the size of one
slice in the Y dimension. Slices 4 and 8 are moved to the next tex-
tures. Note that in time stept+1, a new slice is added owing to the
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inlet or the boundary condition, while a block (12) has moved out
of the framework and is discarded.

����
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dist. bounced
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propagated
distributions
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����
����

����
����
����

New dist.

dist.bounced

Time t Time t+1
Velocity
direction

propagated
distributions

Open

Wall

distributions

distributions

Figure 5: Propagation of the packet distributions along the direction
of the in-slice velocity and application of boundary condition. The
rectangular edges in blue thick lines are the boundaries.

5.3 Boundary Condition

Packet distributions on the boundary should be handled differently
from the internal ones. A general approach is to compute the new
distributions for the boundary distributions, then set the new values
into the distributions textures. The computation can be done with
either the CPU or the graphics hardware.

Bounce-back boundary condition can be easily handled by the
graphics hardware. Because the particles are grouped according to
their velocity directions, we simply copy the boundary packet dis-
tributions to the texture of the opposite velocity direction. Similar
to propagation, the bounce-back is treated for in-slice velocity and
orthogonal velocity separately. For a boundary face unparallel to
the slices, the intersection of the face with a slice is a line segment
(or a curve, if we allow non-planar boundary face). We set the dis-
tributions next to the intersection by drawing texture strips which
are just one texel wide. Figure 4 shows the bounce-back from the
left and the top walls. Note that the distributions leaving one slice
become the new distributions of the slice with the opposite velocity
direction. For a boundary face parallel to the slices, usually a 2D
texture needs to be updated. In Figure 5, the block marked ”new
slice” is obtained from the slice at the same position but with an
opposite direction, or it is set to the inlet distributions if the slice is
adjacent to an inlet face.

5.4 Packing

In our preliminary work [18] of hardware accelerated LBM, we
stored only the distributions of the same direction in a single tex-
ture. Due to the restriction of the current graphics hardware and the
considerations of efficiency, every distribution texture is in the for-
mat of RGBA. Hence, eachfqi is replicated 4 times into the RGBA
channels, and the operations over the distributions are duplicated as
well.

In this paper, we pack fourfqis from different directions as an
RGBA texel. That is, a single texture is composed of four distribu-
tion arrays with different velocity directions. This packing scheme
reduces the memory requirement of distributions to nearly1/4 of
the design without packing.

To compute densityρ (refer to Equation 15), we use a dot-
product to add the distributions stored in different color channels,
as shown in Figure 6. The packing essentially reduces the number

of operations to one quarter for the computation of density. Multi-
ple distribution textures are added together with the OpenGL exten-
sions of multi-textures and the register combiners. In addition, we
also utilize the additive blending of the frame buffer to make it un-
necessary to backup the intermediate contents by copying the frame
buffer to a texture or switching to different frame (pixel) buffer.

The calculation of velocities is a little more complicated owing
to the packing, since each distribution needs to be multiplied with
its own direction vector−→eqi and the RGB components can’t be read
completely individually in the current implementation of the regis-
ter combiners. Therefore, we need to dot-product the distributions
in the RGB channels with (1, 0, 0) or (0, 1, 0) to separate the dis-
tributions. The value in the blue channel is extracted with an alpha
combiner. As shown in Figure 7, we add eight distribution slices
(stored in two textures) weighted by the corresponding−→eqi with six
combiner stages. Here we apply a trick on the final combiner stage
so that it adds four inputs. Note that the inputs B and C to the fi-
nal combiner stage are scaled by 2 and A is set to 0.5, while the
other two inputs of the final combiner stage are sent to Spare0 and
Secondary. Again, we use additive blending of the frame buffer to
add consecutive outputs from the final combiner to avoid copying
the frame buffer. Range separation are applied to−→eqi so that neg-
ative values are not clamped. That is, we compute−→v + and−→v −

separately and later add them together.

5.5 Scaling of the LBM Equations

In this section, we show how to apply the range transformation
described in Section 3 to the LBM equations. Assumefmax

q is
the left-hand scalar of the packet distributions and the equilibrium
packet distributions of sub-latticeq. We define the scaled distribu-
tions f̃qi and the scaled densitỹρ as:

f̃qi =
1

fmax
q

fqi (19)

ρ̃ =
ρ

ρmax
=

∑
qi

fmax
q

ρmax
f̃qi (20)

Since all thefqi are positive inputs,ρmax = U(ρ) =
∑

qi
fmax

q .
We also define:

1

ρ̃′
=

ρmin

ρ̃ρmax
(21)

whereρmin is the lower bound of the density and1
ρ̃′
∈ [0, 1].

According to Equation 2 and the symmetry of the LBM, the
right-hand factor of the scaled velocityU(−→v ) is:

U(−→v ) =
1

ρmin
max

b

∑
qi

fmax
q {−→eqi[b] > 0} (22)

whereb is the dimension index of vector−→eqi. Note thatU(−→v ) and
vmax are scalars instead of vectors. Then, the scaled velocity is
computed as:

−̃→v =
−→v

vmax
=

U(−→v )

vmax

1

ρ̃′

∑
qi

(
fmax

q

U(−→v )ρmin
−→eqi)f̃qi (23)

With such range scaling, Equations 17 and 18 become:

f̃qi(−→x +−→eqi, t + 1) = f̃qi(−→x , t)− 1

τ
(f̃qi(−→x , t)− f̃eq

qi ) (24)
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Figure 6: The configuration of the register combiners for computing density from packed distributions.c denotes constants dependent onqi
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Figure 7: The configuration of the register combiners for computing velocity from packed distributions.
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For D3Q19 model,Aq ≥ 0, Bq ≥ 0, Cq ≥ 0 andDq ≤ 0, hence:

U(feq
qi ) = max((ρmaxAq +

2Bqv
maxρmax + 4Cq(v

max)2ρmax),

(2Bqv
maxρmax − 4Dq(v

max)2ρmax)) (26)

Note that in Equation 25, we scaled the vectors before the dot prod-
ucts. The scaling factor is chosen to be a power of two so that it is
easy to implement it in hardware.

6 Experimental Results

We have implemented our techniques on an Nvidia GeForce4 Ti
4600 card that has 128MB of memory. For comparison, we also im-
plemented the LBM in software on a PC with a 1.6Ghz P4 processor
and 512MB DDR memory. We use the D3Q19 model throughout
the experiments.

6.1 Accuracy

A major concern about using graphics hardware for general com-
putation is the accuracy. Most graphics hardware supports only 8
bits per color channel. There have been a few limited supports of
16-bit textures but are too restricted for a relatively complicated ap-
plication such as the LBM simulation. Fortunately, the variables of
the LBM fall into a small numerical range which makes the range
scaling effective. Besides, the property of the LBM, that the macro-
scopic dynamics is insensitive to the underlying details of the mi-
croscopic physics [?], relaxes the requirement on the accuracy of
the computation.

Figures 8a and 8b shows two color-encoded velocity slices ex-
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tracted from a 3D LBM simulation. Figure 8a is computed by the
CPU with floating-point accuracy and Figure 8b is obtained with
the hardware approach described in the paper. Figure 8c shows the
exaggerated error image with all pixel values scaled up by 10. All
the values are transformed to the range of [0, 255] for display. Vi-
sually, it is difficult to see any difference between Figure 8a and 8b.
Actually, the maximal pixel-wise difference is less than 1% after
one step of simulation.

(a) (b) (c)

Figure 8: Velocity slice computed by (a) software, (b) graphics
hardware. (c) The difference image between (a) and (b) scaled up
by a factor of ten.

6.2 Performance

Stitching smaller textures into bigger ones significantly reduces the
overhead of texture switching. Before testing the performance of
our hardware implementation of LBM, we first determine how big
the stitched textures should be. Figure 9 shows the relationship be-
tween the area of the stitched textures and the number of cells that
the hardware can handle per second. For our hardware configura-
tion, a texture of the size of512 × 512 performs the best. In fact,
for textures smaller than256× 256, the computation time is nearly
independent on the size of the textures. Note that we restrict the
dimensions of the textures to be powers of two, although we could
exploit the non-power-of-two-texture extension to achieve even bet-
ter results.
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Figure 9: Number of cells processed per second as a function of the
area of the stitched textures. Note that the X axis is in Logarithmic
scale.

Figure 10 compares the time (in seconds) per step of the hard-
ware LBM with a software implementation. The statistics does
not include the time for rendering. The ”Stitching” curve refers to
the performance after stitching small ones into512× 512 textures,
while ”No Stitching” does not. Note that the hardware accelerated
technique wins in speed for any size of the model, except that for
the 163 grid, the ”No Stitching” method is slower than software.
However, simply by stitching the sixteen16× 16 textures into one
64× 64 textures gains a speedup factor of 12. Figure 10 is in loga-

rithmic scale for both the axes. Note that stitching is very effective
for grids equal to or smaller than1283.
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Figure 10: Time per step of the LBM compution with graphics
hardware (with or without stitching) and software.

The speedup factor of the hardware accelerated method against
the software approach is more clearly shown in Figure 11. The pro-
posed method is at least 50 times faster than its software counterpart
except for the163 model. Note that the memory requirement of a
2563 sized model is much larger than the memory on the graphics
board. Actually, only the distributions for a D3Q19 model need
2563 × 19 = 319M. Our implementation still achives 1.7 second
per step for a2563 model, which is acceptable for an interactive
application.
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Figure 11: Speedup factor of the hardware accelerated method to
the software method.

6.3 Application

We visualize the simulation results by either directly showing the
color-encoded velocity field (as in Figure 8) or by injecting parti-
cles into the system from an inlet. These particles are considered
massless, that is, they do not affect the flow calculation. The par-
ticles are advected according to the velocity of the grid cell. The
number of particles depends on the density of the fluid. We then
render the scene with texture splats [18]. Figure 12a shows an im-
age of smoke emanating from a chimney and then blown by the
wind. The left side of the grid is assigned a speed along theX axis
to model the effect of wind. We also incorporate an upward force
due to the difference in the temperature field. Figure 12b shows the
result of hot steam rising up from a teapot and its spout according
to a velocity field simulated with our LBM approach and hardware
acceleration. Both the smoke and the steam are simulated on a323

grid.
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(a) Smoke emanating from a chimney and then blown up by the wind.

(b) Hot steam rising up from a teapot and its spout.

Figure 12: Applications of the hardware accelerated LBM.

7 Discussion

In this paper, we presented the algorithms for implementing the
Lattice Boltzmann Model on commodity graphics hardware. Ex-
perimental results show that the LBM can be simulated on current
low-cost computers in real time for a grid size of up to643 and
interactively for a grid size of1283.

Although we focused on the LBM, our techniques can be ex-
tended to other computations. It is also possible to generalize our
methods into a framework of accelerating a large variety of appli-

cations on conventional graphics hardware and its future enhanced
versions. One of our planned direction is a development environ-
ment including a language describing general parallel computations
and a compiler that automatically translates code written in the lan-
guage into available operations on graphics hardware. We would
also like to develop a debugger for conveniently inspecting the in-
termediate results of the graphics pipeline.
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