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Abstract
Volume rendering is a key technique in scientific visualization that lends itself to significant exploitable paral-
lelism. The high computational demands of real-time volume rendering and continued technological advances
in the area of VLSI give impetus to the development of special-purpose volume rendering architectures. This
paper presents and characterizes three recently developed volume rendering engines which are based on the
ray-casting method. A taxonomy of the algorithmic variants of ray-casting and details of each ray-casting ar-
chitecture are discussed. The paper then compares the machine features and provides an outlook on future de-
velopments in the area of volume rendering hardware.
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1 Introduction

Volume visualization is concerned with the representation, manipulation and display of volumetric data, typi-
cally represented by a 3D grid of scalar values. Volume visualization has become a key factor in the understand-
ing of the large amounts of scientific data generated in a variety of disciplines. Examples include sampled data
from biomedical and geophysical measurements, and simulated data from finite element models or computa-
tional fluid dynamics (see [7] Chapter 7). Another source of 3D data are volumetric geometrical objects syn-
thesized with volume graphics techniques [9]. Direct volume rendering algorithms are employed to reveal the
internal structure of the data [7]. However, their high computational expense limits interactivity and real-time
frame rates. The main computational aspects of volume rendering are the massive amount of data to be pro-
cessed resulting in high storage, memory bandwidth, and arithmetic performance requirements. For example,
projection of a 2563 16-bit per voxel dataset at 30 frames per second requires 32MBytes of storage, a memory
transfer rate of 1GBytes per second, and roughly 50 billion instructions per second (assuming 100 instructions
per voxel per projection).

Two strategies have been developed to address this challenge. The first makes use of massively parallel mul-
tiprocessor architectures to achieve rapid image production rates [20][25][26][28]. The second strategy aims at
the development of co-processors or special-purpose rendering engines that separate real-time image genera-
tion from general-purpose processing (see [7] Chapter 6). This paper presents and compares three special-pur-
pose architectures that were recently developed to meet the requirements of real-time direct volume rendering.

All three architectures implement ray-casting, a volume rendering technique that offers high image quality
and maximum flexibility in the choice of viewing parameters [15]. However, the approaches differ greatly in
overall machine architecture, processing strategy, performance, and supported dataset resolutions. It is our goal
in this paper to reveal the similarities and fundamental differences of these special-purpose ray-casting archi-
tectures and to offer an outlook on future trends in special-purpose hardware for volume rendering. The next
section describes ray-casting and classifies it into different algorithmic variants, namely object order ray-cast-
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ing, image order ray-casting, and a mixture of the two approaches that we call hybrid ray-casting. The object
order approach is implemented by VIRIM, developed at the University of Mannheim, Germany, and presented
in Section 3. VOGUE, developed at the University of Tübingen, Germany, implements image order ray-casting
and is discussed in Section 4. The third architecture, Cube-3, developed at the State University of New York at
Stony Brook, U.S.A., implements a hybrid between these two methods and is presented in Section 5. Section 6
summarizes and compares the main features of these approaches, and in Section 7 we take a look at the future
of special-purpose volume rendering hardware.

2 Ray-Casting Algorithms

Ray-casting is a powerful volume rendering technique that offers high image quality while allowing for algo-
rithmic optimizations which significantly reduce image generation times [16][17]. Rays are cast from the view-
ing position into the volume data. At evenly spaced locations along each ray, the data is interpolated using
values of surrounding data point voxels. Central differences of voxels around the sample point yield a gradient
as surface normal approximation. Using the gradient and interpolated sample value, a local shading model is
applied and a sample opacity is assigned. Finally, all samples along the ray are composited into pixel values to
produce an image [15]. Figure 1 shows the classification of ray-casting algorithms into three categories:
❑ Object order ray-casting: The volume is transformed to be aligned with the view direction prior to ray-

casting, such that the resample locations coincide with integer grid points [3].
❑ Image order ray-casting: A ray is sent from each pixel and the volume is resampled at sample points 

along the ray [15].
❑ Hybrid ray-casting:  An intermediate image aligned with one of the volume faces is produced and then 

transformed to the view direction [14][25][27].

The object order approach is also called data-parallel volume rendering since operations on the volume seman-
tically involve all voxels at once. For efficiency, the transformation of the volume is typically decomposed into
a set of affine transforms requiring shear/scale operations along orthogonal axes [6]. The resulting regular data
access to voxels leads to high performance implementations on massively parallel architectures [24][26].

VIRIM [5] implements object order ray-casting in a flexible and programmable fashion. The hardware con-
sists of two separate hardware units, the first being responsible for 3D resampling of the volume using lookup
tables to implement different interpolation schemes. The second unit performs the ray-casting according to user
programmable lighting and viewing parameters. The underlying Heidelberg Raytracing model [19] allows for
arbitrary parallel and perspective projections. VIRIM is discussed in Section 3.
In image order algorithms, the volume is left in its original coordinate system and rays are cast from the image

Figure 1. Ray-Casting Taxonomy
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plane. Traditional implementations pre-compute a color and opacity volume from the original dataset [3]. Col-
ors are assigned by using the local gradient as surface normal approximation and by performing a local shading
calculation. A user definable transfer function assigns opacity values based on the data and gradient values [15].
This results in two new datasets, one that holds the color of the shaded samples, and a classified volume that
holds sample opacities. For image generation, rays are then cast into these two datasets.

However, any change in classification or shading parameters requires the opacity and color arrays to be re-
computed. Storing the gradients and gradient magnitudes of all voxels for fast classification and shading be-
comes prohibitive for higher resolution datasets. Thus, the algorithm does not allow for interactive exploration
and visualization of dynamically changing datasets.

A simple modification to the algorithm allows to operate directly on the original dataset and to perform shad-
ing and classification during ray traversal. The original data is resampled along the ray using tri-linear interpo-
lation. The sample gradient is computed using central differences of neighboring voxels. Shading and
classification are performed based on the reconstructed sample value and the local gradient.

This approach is taken by VOGUE, a compact, modular, and extensible hardware implementation of image
order ray-casting [11][12][13]. For each pixel a ray is defined by the host computer and sent to the accelerator.
The VOGUE module autonomously processes the complete ray, consisting of evenly spaced resample loca-
tions, and returns the final (sub-)pixel color of that ray to the host. Several such modules can be combined to
yield higher performance implementations. VOGUE is discussed in Section 4.

Many methods have been developed to avoid computations in transparent regions of the volume by encoding
areas with high-opacity voxels into hierarchical data structures [2][16][18]. These data structures must be ac-
cessed once for every ray, leading to multiple traversals and to redundant computation. The achievable data re-
duction is dataset dependent, and if a wide range of samples must be examined (e.g., temperature distributions)
almost no reduction is possible. Image order methods generally lead to redundant data accesses due to the non-
uniform mapping of samples onto voxels, since voxels may contribute to more than one ray sample or may be
involved in multiple gradient calculations.

To get a mapping of ray-samples onto the volume which is one-to-one, hybrid algorithms transform the vol-
ume into an intermediate coordinate system which allows efficient projections onto a face of the volume. This
distorted image is then warped (2D transformed) onto the view plane. The intermediate volume transformation
typically involves a shear and, for perspective projections, a scale of the original slices of the dataset [14].

Using this factorization, Yagel and Kaufman [27] describe a template based ray-casting scheme to simplify
path generation for rays through the volume, and Cameron and Underill [1] efficiently reduce data communi-
cation in a SIMD parallel processor. Schröder and Stoll [25] use the idiom of line drawing and achieve sub-
second rendering times for a 1283 dataset on a Princeton Engine of 1024 processors. Lacroute and Levoy [14]
recently reported on a fast implementation using a shear-warp transformation, and were able to achieve inter-
active rendering times for 2563 datasets on a graphics workstation.

Most of these implementations require a pre-processing step to calculate the gradient field or to generate color
and opacity volumes, thereby inheriting the disadvantages discussed above. To avoid any pre-computations, a
modified hybrid ray-casting algorithm has been developed for Cube-3 [21][22]. Cube-3 is a high-performance
architecture that uses a special memory organization allowing simultaneous access to n voxels parallel to a main
axis of the n3 volume dataset. This memory system allows for the storage of high-resolution datasets without
any duplication of the original data, and enables the real-time visualization of dynamically changing volume
data, called 4D (spatial-temporal) visualization. Cube-3 is discussed in Section 5.

3 Object Order Ray-Casting: VIRIM

VIRIM is an object order ray-casting engine currently being assembled and tested at the University of Mann-
heim [5]. It provides a flexible resampling method and freely programmable shading. The hardware of VIRIM
consists of several modules, each composed of a geometry unit for volume rotation, resampling, and gradient
computation and a ray-casting unit for the final image generation.



The VIRIM system has been designed to achieve 10Hz frame rates for 8 million voxels using the Heidelberg
Raytracing algorithm [19]. In contrast to many other direct volume rendering algorithms, the Heidelberg Ray-
tracing model allows shadowing (see Figure 2b). Shadows are generated by considering that incident light is
absorbed when cast into the volume. Two light sources are placed at 0° and 45° with respect to the viewing
direction. At each sample point along these paths, light is partially absorbed and reflected towards the viewer
using the Phong shading model. X- and Y-gradients are estimated with a 2D Sobel operator [4]. The final image
is composited in front-to-back order, whereby the light is attenuated a second time on its way to the viewer. 

3. 1 General Architecture

The basic approach taken in VIRIM is the division between volume resampling, performed by the geometry
units, and the subsequent image generation, performed by the ray-casting units (see Figure 2a). This division is
fostered by the different data access patterns of these units. Due to the object order approach, the geometry unit
requires access to the whole original dataset for the resampling of a possibly rotated, translated, and zoomed
data volume. The ray-casting unit, on the other hand, requires access to the resampled data only along the major
viewing directions.

3. 2 Geometry Unit

In a software implementation, 80 percent of the computation time per projection are required for geometry op-
erations, perspective and gradient calculations, and resampling using VIRIM’s basic visualization algorithm.
The geometry unit contains special-purpose hardware for these operations and one unit can generate 26 to 36
million transformed locations per second using true 3D resampling. The maximal original dataset size for 16-
bit voxels is 2563 for the currently used 4Mbit DRAMs and 512×512×256 for 16Mbit DRAMs. The maximal
size of the resampled dataset is limited to 5123 by the gradient buffer size.

For each scanline of light rays, the starting point of the ray and the vector to the next resample location are
stored. Address generation hardware generates the positions of the sampling points, whereby the rounded X-,
Y-, Z-components denote the addresses of the neighbors in the original dataset. 

Figure 2. a) VIRIM General Architecture. b) Principle of the Heidelberg Raytracer

Parameters for ray starting point
and vector to the next resample
location

Host

2 Independent Banks of 8 Units each Interpolation Weight Memory

density LUT

DSPs DSPs

Interpolation Tree

X-, Y-Gradient Processor

Address Generator

Board
Master

Board
Master

Geometry
Unit

Ray-casting
Unit

light
source 2

light source 1
and viewer

compositing

shading
at volume
element

absorption of incident light

absorption of incident
and reflected light

Difference to other algorithms:
Absorption of incident light is considered,
thus shadows occur.

a) b)



A dedicated memory system inside each geometry unit allows data access rates of up to 640MBytes per second
(40MHz×8 neighbors×2Bytes/voxel) using commercial DRAMs. This high data rate is achieved by accessing
the 8 voxel neighbors conflict free and by using the Fast Page Mode, alternate memory bank read-out, a 1-entry
cache for storing previously used data voxels, and a controller that returns 0 when the address lies outside of
the data cube. 

Rotation using backward mapping is performed by weighted interpolation among the 8 voxel neighbors of
the resampling location. Before interpolation, the voxel values are mapped onto density values using a density
lookup table (LUT). This feature allows simple grey value segmentation that is a valuable tool for the visual-
ization of biomedical data without prior segmentation. 

A special feature of VIRIM is that the interpolation weights are precalculated and stored in weight memories
of size 256K×16. Each weight is addressed by three 6-bit fractional parts, one per coordinate, of the resampling
location. 6 bits resolution turned out to be sufficient to make artifacts, originating from the discreteness of the
weights, invisible to the viewer. Different interpolation filters like tri-linear interpolation or a local approxima-
tion of a sinc(x) can be used in order to improve the resampling quality. 

After interpolation a gradient hardware estimates the X- and Y-component of the gradient using 2D Sobel fil-
ters.

(1)

Data resolution and accuracy of all calculations are 16 bits for density and gradient values. All memories and
LUTs can be accessed by the host system so that they can be reloaded in real-time. 

3. 3 Ray-Casting Unit

Using the sample and gradient values of the rotated dataset, the ray-casting unit generates the final image. In
order to allow maximum flexibility, VIRIM uses programmable digital signal processors (DSPs) for this task.
Any shading model can be implemented provided that all data for the calculations remain in one sample plane.

The sample density and gradient values are transmitted from the geometry to the ray-casting units over a bus
with a peak transfer rate of 240MBytes per second at 40MHz. Each DSP receives its values from a first-in-first-
out (FIFO) buffer that can be accessed asynchronously. This mechanism decouples fast geometry units from
slower DSPs. For the Heidelberg Raytracing algorithm, a geometry unit is about a factor of 16 faster than a DSP. 

Within 15 clock cycles the DSPs compute the interaction of light and material for each volume element. One
or more scanlines of the resulting projection are calculated per DSP and stored in local memory. 

A local master CPU on the board collects all scan lines of the final image from the DSP memories and trans-
fers the results to the host system. If required, all intra-DSP communication is carried out via this local master
CPU. However, for our current visualization model no communication between DSPs is necessary. 

3. 4 Performance Estimation

The performance of VIRIM is estimated under the condition that the Heidelberg Raytracing algorithm is used.
One VIRIM module consists of four boards of size 36×39cm2, and four modules fit into one crate.

# of Modules Dataset Size Frame Rate

1 256×256×128 2.5Hz

4 256×256×128 10Hz

8 256×256×256 10Hz

Table 1: VIRIM Performance Estimation
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4 Image Order Ray-Casting: VOGUE

VOGUE is a compact and scalable image order ray-casting unit [11][12][13] which provides interactive ren-
dering speed at moderate hardware costs. Real-time performance can be achieved by operating multiple units
in parallel. The basic unit consists of the volume memory and just four VLSI chips. Nevertheless it provides
arbitrary perspective projections (e.g., for walk-throughs), Phong shading, a freely movable point light source,
depth-cueing, and interactive, non-binary classification using opacity and color transfer functions.

Rather than using pre-shaded and pre-segmented datasets, all processing is performed on the fly on the orig-
inal voxels. For each resampling location a specific set of neighboring voxels is read out from which the func-
tion value, the local gradient and the gradient magnitude are computed. Function value and gradient magnitude
are then used as pointers into several lookup tables, which hold the classification transfer function (opacity α),
the color assignment (RGB), and material properties (such as the specular reflection coefficient ks) for shading.
Each sample is Phong shaded and the intensities of all points along a ray are composited in front-to-back order
according to their opacity.

Image quality and rendering speed can be balanced according to the users requirements. In the fastest oper-
ation mode the sample value S is tri-linearly interpolated from V0 ...V7 (see Figure 3a), whereas the gradient
components are approximated by Gx=P 1-P0 , Gy=P 3-P2  and Gz=P 5-P4 . Due to the eight-port memory

system, the processing of a sample point requires only one memory access in this mode.
Three additional accesses, as shown in Figures 3b - d, enable a more accurate gradient approximation. Access

2 yields all values needed to compute the x-components of the gradients at the corner positions of the cell in
question. These components are then fed into the tri-linear interpolator to give Gx at the resample location. The
same is done for the y- and z-direction. In this mode, the processing of one raypoint takes place in four steps.

The accuracy of the gradient can further be enhanced by spending three more accesses (see Figures 3e
through g). The x-components of the gradient at the cell corners are then computed from weighted surrounding
voxels Va,b,c according to

(2)

and again tri-linearly interpolated at the resample location. The same is done for the y- and z-components. In
this mode, seven memory accesses are required for the processing of one resample location.

Figure 3. VOGUE Access Types and Gradient Approximation
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4. 1 General Architecture

The algorithmic steps are mapped in a straight-forward way onto a pipelined architecture as shown in Figure 4a.

After having obtained all ray parameters from the host, the address sequencer (ASQ), a VLSI unit, sequentially
generates all raypoints. For each of them, up to seven sets of eight addresses are passed to the memory system.
The volume memory (VoluMem), which has a capacity of 256MBytes for 5123 16-bit voxels, consists of eight
independent memory banks and delivers eight voxels per access. The reconstructor and extractor (REX), a
VLSI chip, performs the tri-linear reconstruction and computes the gradient and gradient magnitude in all ren-
dering modes. Sample value and gradient magnitude then address several lookup tables to yield the sample col-
or (RGB) and its material properties (opacity α, ks). The cascadable shading unit COLOSSUS implements the
unrestricted Phong illumination model (non-parallel light, perspective projection) for a single point light source
and performs depth-cueing. The compositing unit COMET finally sums up the intensities of all points on a ray
and passes the pixel color to the frame-buffer.

4. 2 Parallel Operation of Multiple Units

The dataset is divided into subvolumes, which are distributed across different units. Each unit processes a given
ray as long as it traverses through its own subvolume. On exit, the properties defining the ray at this point are
sent to the neighboring unit. Ideally the number of rays which can be processed simultaneously equals the num-
ber of units. A special data distribution scheme has been developed which removes the gaps between the sub-
volumes by replicating a certain set of boundary voxels [12]. A multi-master bus can be used for up to eight
engines, requiring a bandwidth of 640MB/s for an eight-fold speedup. For a larger number of units we propose
a ring-connected cubic network as shown in Figure 4b for 4×4×4 units. Simulations show that each link needs
a transfer bandwidth of about 27MByte/s, giving a total transfer rate of about 5.2GBytes/s.

4. 3 Performance Estimation

A performance estimation depending on rendering mode and dataset size is given in Table 2.

Figure 4: a) VOGUE Hardware Architecture. b) Parallelization Structure
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5 Hybrid Ray-Casting: Cube-3

Cube-3 was developed at the State University of New York at Stony Brook for arbitrary parallel and perspective
projections of high-resolution volumetric datasets [21][22]. The Cube-3 hybrid ray-casting algorithm requires
at most one memory access to each voxel per projection without any pre-processing or data dependent optimi-
zations. Consequently, it allows for the real-time 4D visualization of dynamically changing datasets, for exam-
ple, of the in-situ fluid flow in rocks. The hardware contains a specially organized and fully distributed memory
system that provides enough throughput for the visualization of 5123 16-bit per voxel datasets at 30 frames per
second.

5. 1 Cube-3 Algorithm

Figure 5a shows an outline of the Cube-3 algorithm. In order to fetch every voxel only once per projection from
the cubic frame buffer (CFB), discrete voxel-rays are generated from the continuous rays using a 3D variation
of Bresenham’s line drawing algorithm [10]. This algorithm guarantees constant stepping by a distance of one
along the major axis (e.g., Z) of the viewing direction. The steps in the two non-major directions (e.g., X and
Y) are stored in lookup tables, so called templates [27]. Each new discrete ray is generated using these tem-
plates, thereby avoiding any overlap of voxels between neighboring discrete rays [25].

The discrete rays are cast from each pixel on the base-plane, which is the volume face that is most perpendicular
to the viewing direction. All discrete rays belonging to a scanline of the base-plane form a plane in the dataset.
We call this (possibly slanted) plane of discrete ray samples the Projection Ray Plane (PRP). The algorithm
projects a distorted intermediate image onto the base-plane. A warping of the base-plane projection onto the
viewing plane produces the final image.

# of Units Size Frame Rate / Fastest Mode Frame Rate / 4-Access Mode Frame Rate / 7-Access Mode

1 2563 2.5Hz 0.6Hz 0.3Hz

8 2563 20Hz 4Hz 2Hz

64 5123 20Hz 4Hz 2Hz

Table 2: VOGUE Performance Estimation

Figure 5. a) Cube-3 Algorithm Overview. b) Cube-3 General Architecture. (CFB: Cubic Frame Buffer; 
PRP: Projection Ray Plane; ABC Buffer: Above, Below and Current Buffer; TRILIN: Tri-linear Inter-

polation Unit; VCU: Voxel Combination Unit)
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Two discrete PRPs (top and bottom PRP in Figure 5a) are used to generate the sample values of the original
continuous rays. A sheared tri-linear interpolation is performed using the voxels of neighboring discrete rays
from the top and from the bottom PRP [22]. The resulting values yield a continuous plane of ray samples. Three
such continuous planes are stored in the above, below, and current (ABC) sample buffers for gradient estima-
tion and shading. In order to evaluate the gradient at a certain resample location, we use central differences be-
tween the samples of rays on the immediate left, right, above and below, and along the current ray [22]. This
allows to share already computed ray samples between neighboring rays and avoids any additional access to
voxels in the CFB.

The samples of the rays are shaded and opacities are assigned using a user controllable transfer function. The
shaded rays are composited into a final pixel color using one of several projection schemes, such as first or last
opaque projection, maximum voxel value, weighted summation, or compositing. The final base-plane pixel val-
ue is transmitted to the host where it is 2D transformed and interpolated into the final view plane image.

5. 2 General Architecture

The Cube-3 architecture is highly parallel and pipelined and allows for the visualization of 5123 16-bit per voxel
datasets at 30 frames per second. Figure 5b shows a diagram of the overall design.

The CFB of an n3 dataset is organized in n dual-access memory modules, each storing n2 voxels. A special
3D skewed organization enables the conflict-free access to any beam of  n voxels [8]. A beam is a discrete ray
of voxels parallel to a primary axis of the CFB. A voxel with space coordinates ( x,y,z) is being mapped onto
the k-th module by:

(3)

The internal mapping ( i , j )  within the module is given by: i=x, j=y. Since two coordinates are always constant
along any beam, the third coordinate guarantees that voxels from any beam reside in different memory modules.

PRPs are fetched according to the discrete ray-templates as a sequence of voxel beams. The beams are stored
in discrete ray buffers that are part of the TRILIN units shown in Figure 5b. A high-bandwidth global bus (Fast
Bus) aligns all discrete rays in each PRP parallel to a main axis of the 2D buffers (see Figure 5a). Using a 2D
skewing similar to that of the CFB memory, the 2D buffers support conflict-free storage of beams coming from
the CFB and conflict-free retrieval of axis-aligned discrete rays.

Consecutive discrete rays are fetched each clock cycle and placed into n tri-linear interpolation units (TRI-
LINs). Overlapping voxels of neighboring discrete rays can be shared between neighboring TRILIN units. The
interpolated continuous ray samples are stored in ABC buffers and the gradients at each sample location are
estimated. The interpolated sample and gradient values are forwarded to shading units (Shaders), where a user
controlled look-up table of transfer function values assigns each sample an associated opacity value. The color
value at each sample location is calculated according to a local illumination model.

The n shading units are the leaves of a folded and circular binary tree that contains a hierarchical pipeline of
n-1 primitive computation nodes called voxel combination units (VCU). This tree, called the ray projection
cone (RPC), takes one ray of opacity and color samples and generates one projected pixel value per clock cycle.
The RPC implements all of the projection schemes mentioned above. The resulting pixel of the base-plane is
transmitted to the host where it is 2D warped and stored in the frame-buffer.

5. 3 Performance Estimation

Achievable frame rates of Cube-3 are limited only by the data-transfer rate on the Fast Bus due to the fully pipe-
lined implementation of all units. Table 3 gives some examples of performance depending on bus clock fre-
quencies. A Cube-3 implementation for 30 projections per second of a 5123 16-bit dataset requires 8 custom
boards and a specially fabricated bus backplane.

We are currently developing the Cube-4 architecture which overcomes the global voxel communication bot-
tleneck of the Fast Bus. Cube-4 has local and fixed data and control connections between processing elements
while still preserving the algorithmic features of Cube-3. Preliminary information is available in [23].

k x y z+ +( ) mod n= 0 k x y z, , , n 1–≤ ≤



6 Comparison

VIRIM, VOGUE and Cube-3 represent different solutions for volume ray-casting accelerators which are
strongly characterized by their main target specifications, i.e. flexibility for VIRIM, compactness for VOGUE
and high rendering speed for Cube-3. A comparative summary is given in Table 4.

VIRIM offers flexibility and versatility for a large variety of application areas. Using object order ray-casting,
the architecture provides a farm of DSP processors for the ray-casting portion of the algorithm. Fixed functions,
such as the reconstruction of arbitrarily oriented slices through the volume, are assigned to dedicated hardware
units for maximum speed. The programmable ray-casting processors allow the user to implement different vi-
sualization models and to balance image quality versus rendering speed.

The VOGUE project aims at making interactive volume visualization available in single-user workstations.
An efficient image order ray-casting algorithm is directly mapped onto a pipelined architecture, yielding a com-
pact and modular design. Higher rendering performance can be achieved by distributing subvolumes of the
dataset among several basic units interconnected by a high-speed network. This modularity allows the user to
trade machine size for performance.

Rendering high-resolution datasets at high projection rates is the primary goal of Cube-3. A special memory
organization and a highly parallel and pipelined machine architecture yield the required high performance. The
use of a hybrid ray-casting algorithm allows for exploitation of coherency and successfully solves the tradition-
al memory access bottleneck. The resulting real-time projection rates make new applications such as 4D vol-
ume visualization possible.

To sustain the high-memory bandwidth requirements of volume rendering, all three architectures employ
memory interleaving. VIRIM and VOGUE use a similar eight-fold interleaving to simultaneously access eight
neighboring voxels out of the dataset. A specially skewed and 512-fold interleaved memory in Cube-3 allows
for the conflict free retrieval of 512 voxels parallel to a main axis of the volume dataset. 

Another characteristic of all three approaches is a pipelined architecture for high sustained rendering perfor-
mance. The pipeline stages of VIRIM and VOGUE are processing single ray samples. VIRIM employs a DSP
farm in the shading and classification stage, whereas VOGUE maintains a fully pipelined architecture for these
operations. The architecture of Cube-3 is ray-oriented, and each pipeline stage processes all sample values be-
longing to a ray simultaneously.

In contrast to Cube-3, which already exhibits the largest possible degree of parallelism, VIRIM and VOGUE
offer different approaches for the parallel operation of multiple units. To circumvent data dependency problems,
VIRIM replicates the entire volume memory in each parallel geometry unit. VOGUE partitions the dataset and
distributes the subvolumes over multiple units, thereby allowing for a high degree of modularity.

7 Outlook

Although great efforts are currently undertaken to reduce the algorithmic complexity of volume visualization
towards high-speed software implementations, the evolution of surface-oriented graphics shows that in the long
run hardware accelerators are the ultimate solution. In this paper we discussed three different architectures,
which have the limited memory bandwidth as their central design aspect in common. A huge amount of data
must be read out of the memory and transferred to computational units before it is finally reduced to a single

Bus Frequency Dataset Size Frame Rate

8MHz 1283 30Hz

33MHz 2563 30Hz

66MHz 5123 15Hz

125MHz 5123 30Hz

Table 3: Cube-3 Performance Estimation



pixel. Therefore, the future trends in hardware-supported volume visualization might be strongly influenced by
the just emerging logic-embedded memory technology. The 256Mbit-DRAM will appear well within this de-
cade, and then a 2563 dataset of 16-bit voxels will fit on a single chip. The most obvious thing to do then is to
place the computational units needed for the visualization on the memory chip as well, and to exploit the enor-
mous internal bandwidth while drastically reducing the required external bandwidth. For example, integrating
eight parallel memory subsystems and a tri-linear interpolator on the same chip could reduce the required ex-
ternal bandwidth by a factor of eight. If we succeed in placing the entire visualization pipeline on a single chip
(e.g. by using different algorithms, or by placing only a subvolume on a device), communication bandwidth
requirements as well as the size and costs of a voxel graphics system could be reduced by orders of magnitude.

Moreover, with the advent of even higher integrated memory devices (the 1Gbit chip has already been pre-
sented), true cubic frame buffers holding volume datasets as well as voxelized surface-defined objects will be
feasible. Since ray-tracing volumetric datasets is not affected by the complexity of the scene [9], this could rep-
resent a great step towards real-time rendering with global illumination models.
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VIRIM VOGUE Cube-3

Algorithm Object order ray-casting Image order ray-casting Hybrid ray-casting

Overall
architecture

Separate geometry and ray-
casting (image generation)

units

Single, compact module
containing volume memory

and four VLSI chips

Highly parallel architecture,
specially skewed volume mem-

ory, ray-projection cone

Interpolation Programmable interpolation
using a LUT

Tri-Linear Interpolation Tri-Linear Interpolation

Shading Two fixed light sources,
2D Sobel X- and Y-gradient 
estimation, shading models
(inc. Phong) programmable

Up to four movable point light
sources, Phong shading, fast 8-
voxel or high-quality 56-voxel

gradient estimation

Single, movable parallel light
source, Gouraud or Phong

shading, ABC gradient estima-
tion using 10 or 12 samples

from neighboring rays

Parallelism 16 programmable DSPs per
ray-casting unit. 1 geometry

and 1 ray-casting unit per mod-
ule, 4 modules per crate, high-
bandwidth interconnection bus,

replicated dataset in each 
geometry unit

Up to 64 basic units intercon-
nected by 5.2GB/sec ring-

connected cubic network, each
unit fully pipelined, dataset
partitioned in subcubes with
replicated boundary voxels

Fully distributed and skewed
cubic frame buffer, high-
speed 8GB/sec bus inter-

connection, ring-connected
ray-projection cone, fully

pipelined architecture

Dataset size 2563, 16 bits per voxel 5123, 16 bits per voxel 5123, 16 bits per voxel

Performance 10Hz for 256×256×128,
using 4 modules

2.5Hz for 2563 using 1 unit,
20Hz for 5123 using 64 units

30Hz for 5123,
at 125MHz bus clock

Operational
Status

Prototype assembled,
undergoing testing

Proposed architecture,
software simulation

Proposed architecture, simula-
tion in software and Verilog

Table 4: Architectural Features of VIRIM, VOGUE and Cube-3
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