
1

ABSTRACT
Recent efforts in cone-beam scanner technology have focused

on developing interactive scanning capabilities, for example, to
enable image-guided surgical interventions or real-time diagnosis
with time-varying data. However, apart from a fast scanner these
applications also require a fast reconstruction algorithm to match.
The Filtered Backprojection algorithm devised by Feldkamp,
Davis, and Kress is the most widely used algorithm for 3D recon-
struction from cone-beam projections, and it is the algorithm with
the lowest complexity. Yet, pure software implementations have
difficulties to process the data at the speeds required for real-time
scanning. One option is to utilize expensive and rare custom boards
for this purpose. We describe an alternative solution, which is inex-
pensive, uses readily available PC graphics hardware boards, and
provides the desired performance at the quality required.

1 INTRODUCTION
The Filtered Backprojection algorithm proposed by Feld-

kamp, Davis, and Kress (FDK) [6] is by far the most popular cone-
beam reconstruction algorithm. It has been employed by a great
number of researchers in conjunction with various types of cone-
beam scanners (see e.g., [5]). The FDK algorithm first filters the
projection data and then accomplishes the reconstruction by back-
projecting the filtered projections. These backprojection operation
are also part of algorithms that perform exact 3D reconstruction via
the inverse Radon transform [4][10]. In fact, the FDK algorithm is
a special (non-exact) case of the inverse Radon transform for a sin-
gle circular source/detector orbit. The backprojection procedure
has the highest complexity with O(N4) complexity, making it the
most time-consuming part of any of these algorithms.

Recent efforts in cone-beam scanner technology have sought
to develop interactive scanning capabilities, for example, to enable
image-guided surgical interventions or real-time diagnosis with
time-varying data, such as the beating heart. However, the speed at
which 3D reconstruction can be achieved with pure-software
implementations is limited by the performance of general-purpose
CPUs. For example, the reconstruction of a 2563 volume from 256
projections can take over 10 minutes, even with simple nearest
neighbor interpolation. To overcome these limitations, custom
chips and boards (an ASIC chip by Terarecon Inc. and an FPGA
board by Mercury Computer Systems Inc.) have been introduced in
recent years. Although impressive reconstruction speeds in the
range of seconds can be achieved, the high cost of these boards
somewhat limits their accessibility to both researchers and many
medical institutes. In addition, once conceived, these implementa-
tions offer little flexibility to accommodate algorithmic updates.
Thus, while these boards are certainly an economically sound solu-

tion for the incorporation of proven technology into high-priced
scanners, a more main-stream solution is also desirable for more
experimental and research settings.

In 1994, Cabral, Cam and Foran [2] performed accelerated 3D
reconstruction utilizing the hardwired, multi-pipelined texture
mapping hardware resident in mid-range SGI workstations. Muel-
ler and Yagel [12] implemented the Simultaneous Algebraic
Reconstruction Technique (SART) [1] algorithm on this platform.
This hardware, however, had several shortcomings: (1) it was
expensive (the cost of these workstations was over $20k), (2) only
integer arithmetic was available, limiting the accuracy that could
be achieved, and (3) the hardware was not programmable, limiting
the types of operations that could be performed. To overcome
shortcomings (1) and (2), some portions of the backprojections
(accumulations, divisions, etc) had to be performed on the CPU,
slowing performance due to the small bandwidth at the CPU-
graphics interface.

The emergence of high-end PC-based graphics boards, made
economical by the ever-growing demands of computer games, has
brought accelerated texture mapping to the consumer market and
helped overcome shortcoming (1) of the previous approaches.
Chidlow and Möller [3] used the NVidia GeForce4 board for 3D
emission tomography reconstruction from a stack of fan beam data
with the OS-EM algorithm [8]. However, a considerable portion of
the computations still had to be performed on the CPU since the
graphics hardware only provided 8-bit arithmetic. This limited per-
formance a great deal. To enhance precision, they extended a
scheme introduced by Mueller and Yagel [12] in which the data
words were split among the RGBA color channels. This allowed
the projection/backprojection operations to be performed on the
board, while the end result needed to be assembled on the CPU.

The latest generations of graphics cards (GPUs) from NVidia
and ATI (the NVidia GeForce FX and the ATI Radeon) finally
overcome all three of the previous shortcomings: They are fully
programmable, offer special ALU pipelines with floating point
arithmetic, and yet cost less than $500. In another paper [15], we
demonstrated that the floating point pipelines enabled speedups at
the order of 1-2 magnitudes for a variety of reconstruction algo-
rithms, such as SART [1], OS-EM [8], and FDK. However, we
recently found that these floating point pipelines are 4-5 slower
than the hardwired 8-bit texture mapping facilities, leading to a
less-than-expected GPU performance of the FDK algorithm in par-
ticular. To cope, we explore a novel scheme that judiciously splits
calculations among the 8-bit and the floating point hardware for
optimal performance, but without significantly compromising
reconstruction quality. We will start with some background infor-
mation, then describe our implementation, and finish with results
and conclusions.

ULTRA-FAST 3D FILTERED BACKPROJECTION ON
COMMODITY GRAPHICS HARDWARE

Fang Xu and Klaus Mueller

Center for Visual Computing, Computer Science Department, Stony Brook University, NY, USA

2

2 BACKGROUND

2.1 The FDK algorithm
The FDK projection geometry is illustrated in Fig. 1, while

the algorithm is written as follows:

where the depth weighting factor cj is:

(1)

This depth factor is independent of the (axial) x-coordinate.

2.2 Graphics hardware fundamentals
Graphics objects

are typically composed
of polygon meshes,
where additional surface
detail can be modeled
by affixing (or mapping)
images (or textures) of
the desired detail onto
the polygons during the
rendering phase. Texture
mapping is an efficient
way to provide intricate
surface detail without
increasing an object’s
polygon count, and graphics hardware is highly optimized to per-
form texture mapping very fast, even under perspective distortion
[7]. There are two main stages in a graphics pipeline: the geometry
processing stage and the polygon rasterization stage. In the former,
the geometric information, i.e., the polygon vertex coordinates, are
transformed to determine their screen space coordinates. Then, in
the rasterization stage these projected vertices are connected to
form the (projected) polygon, whose content is filled (or raster-
ized), combining colors interpolated from the polygon’s vertex
attributes and from the mapped texture. The pixels so generated are
called screen fragments. Graphics processors gain their high poly-
gon throughput rates (close to 400M/s) by providing highly paral-
lel, hardwired logic for both geometric processing and
rasterization. However, while (parts of) these computations are
performed at floating point precision internally, the precision of the
output fragments (i.e., their RGBA color and opacity values) has
always been 8 bit (12 bit on the SGIs). As was stated above, this
limited the utility of the hardware for CT applications. Fortunately,
the latest hardware has added a second data path for both rasteriza-
tion and geometric processing – a set of fully programmable float-

ing point pipelines, that, similar to the hardwired units, operate in
SIMD (same instruction, multiple data) mode. It turns out, how-
ever, that, while still much faster than a CPU, these floating point
pipelines are about 4-5 time slower than the rasterizers (as well as
the geometry processors), which, in part, is due to the higher mem-
ory bandwidth required for the 4-byte floating point data. It seems
therefore desirable to distribute the workload to the hardwired ras-
terizers as much as possible, whenever 8-bit precision can be toler-
ated.

GPUs, such as the NVidia FX 5900 or ATI 9800 are consid-
ered stream processors [9]. Each of the 8 parallel pipelines can
accept up to 16 different input vectors or streams (stored in 2D tex-
tures), perform a computation on them, and produce an output
stream, which is also stored into a 2D texture. GPUs are consider-
ably faster than CPUs for stream-computations, due to their high
memory bandwidth, and their highly parallel and pipelined SIMD
architecture. Finally, additional task-parallelism can be gained
from performing simultaneous calculations in the RGBA channels
of the pipelines. Thus, any algorithm that features long loops of
independent operations can fully benefit from the high-perfor-
mance stream architecture that GPUs can offer, and the FDK
reconstruction method is such an algorithm.

3 IMPLEMENTATION

3.1 General algorithm
To illustrate our implementations, we rewrite the FDK

method in vector notation:

(2)

where F is the filtering operator, B is the backprojection operator, V
is the reconstructed volume, S is the number of projections in the
set, and Pϕ is the projection image taken at angle ϕ. We currently
perform F on the CPU since it is a less costly O(N2) algorithm per
projection, and we intend to keep all computational units busy.
Once filtered (and scaled to 8 bit), the projections are streamed into
the GPU. The overhead is minimal since the loading of the GPU’s
texture memory can occur simultaneously with GPU calculations.

We have mentioned before that the GPU’s hardwired 8-bit
rasterizers are significantly faster than the GPU’s floating point
units. Thus we would like to use them as much as possible. The
most compute intensive portion of the remaining part of equation
(2) is the backprojection, since it requires bilinear interpolation. In
many applications, the projection images obtained from the scan-
ner are 8-bit (we shall address the case of 12-bit and 16-bit images
later). We do not require the interpolation to return results at signif-
icantly higher accuracy (note that this may be different for iterative
algorithms). Thus there is a real potential for using the hardwired
rasterizers for the backprojection. The accumulation, however,
must be executed in floating point precision since the range of val-
ues is likely to overflow 8 bits.

Our general algorithm is illustrated in Fig. 2. To avoid exces-
sive context switching between 8-bit projections and floating point
summing, we process the volume slice-by-slice. We start by initial-
izing a large 2D texture, with S 2D tiles of size N2 each. Using the
backprojector described later, we backproject each image with the
viewing geometry set appropriately to the current volume slice and

for each projection projk
// perform filtering
weight pixels by a/b
ramp-filter each column (yd direction)
// perform backprojection
for each grid voxel vj

project vj onto image along cone-beam rays
interpolate voxel update dvj
weight dvj by depth factor cj: dvj = dvj · cj
add result to grid voxel: vj = vj + dvj

cj
a2

a vjy
2 vjz

2+ ϕ ϕk–()cos+()
2--=

a
x

y

zϕk

projection

Figure 1: FDK projection geometry.

voxel vj

xdyd

ϕb

V B F Pϕ()()
ϕ S∈
∑=

3

the projection angle ϕ. We store each backprojection result in the
proper tile. Once all S projections have been backprojected, we
sum the tiles as a vector add in the floating point pipelines. Cur-
rently, GPUs allow us to add 10 vectors in one pass. Thus, if
S=128, we can complete the backprojection of one volume slice in
128 8-bit passes, one context switch, 13 floating-point passes, and
another context switch to proceed to the next slice.

The volume slices are represented
as 2D textures mounted onto a stack of
parallel polygons (see Fig. 2).
Although it is easy to forward project
such a volume under perspective
(cone-beam) geometry, it is much
more difficult to achieve backprojec-
tion with this direct approach, since
now the “screen” is formed by the
polygon and the line of slight is not
perpendicular to this screen (Fig. 3).
We shall now describe two methods
that achieve this backprojection.

3.2 Backprojection via projective textures
The first method is the “inverse” of the forward projection of

Fig. 3, but uses an indirect projection mode called projective tex-
tures [14]. It works similar to a slide projector (see Fig. 4). This
method is described in detail in [12]. Briefly, the backprojected
image forms the “slide”, which is perspectively projected onto the
“screen” formed by a polygon that is placed at the location of the
volume slice to be updated. The “slide projection” is then “viewed”
in parallel projection mode on the screen (i.e., it is rasterized into
the framebuffer). Here, the perspective transform is given by the

viewing geometry at which the projection was originally obtained
from the scanner. A downside of the method is that two texture
stacks are needed, one for each major projection direction, and that
these texture stacks have to be merged at the end.

3.3 Backprojection via texture spreading
In the projective texture approach an entire 2D texture must

be accessed/streamed through the pipeline during each backprojec-
tion (compare Fig. 3). This can cause bottlenecks when the mem-
ory bandwidth is less than the compute bandwidth. An alternative
backprojection approach is texture spreading, which minimizes the
required memory bandwidth. Instead of 2D projective texture sam-
pling, this approach spreads a 1D texture across the frame buffer
and updates the horizontal slices (the y-axis stack, green slice in
Fig. 2) instead of the vertical slices (the x-axis and z-axis stacks,
red slice in Fig. 2). This also eliminates the need for the texture
stack merge that arises with projective textures.

In a parallel projection geometry, each volume slice along the
vertical axis corresponds to a single row of the projection data. The
resulting spreading operation can be implemented by mapping the
1D texture line endpoints to the near and far end of the volumes
slice’s polygon (Fig. 5a). Off-axis projections can be implemented
by rotating the slice polygon first and then projecting it to the
screen, texture-mapped as just described (Fig. 5b). This will only
require the fetch of a single texture line from GPU memory, which
optimizes the required memory bandwidth. We extend this basic
approach, first introduced in [3], to cone-beam backprojections. It
can be achieved by a cone- and fan-angle conformant mapping of
the slice polygon vertices into the texture space of the back-
projected image (see Fig. 5c). Although now perhaps 4-5 lines of
the texture needs to be fetched per slice (Fig. 5d), depending on the
volume size and the cone-angle, the required bandwidth is only a

8-bit rasterizers floating point ALUs

projection images backprojections

completed

backproject

store add
store

volume

slice

(2D texture stack) (2D texture tiles) (2D texture stack)

Figure 2: FDK hardware implementation overview. All steps to
calculate one volume slice (shown in red) are shown.

Y

Z

X

source
image plane

Figure 3: Perspective
projection.

(result)

projective texture
backprojected imageprojective center

volume center

volume slice/polygon
slide screen

cone angle

detector
angle

framebuffer

Figure 4: Backprojection with projective textures.

(a) (b) (c)

Figure 5: Backprojection with texture spreading: (a) backprojection result for parallel beam (spreaded row); (b) backprojection for par-
allel beam at an off-angle position; (c) general backprojection for cone-beam geometry; (d) side view for cone-beam geometry.

vertex mapping
backprojection backprojection

row of backprojected image 3 rows of backprojected image

vo
lu

m
e

sl
ic

e

vo
lu

m
e

sl
ic

e

vo
lu

m
e

sl
ic

e

(d)

slice k

volume
image plane

source

relevant pixels for slice k

4

small fraction of that of the projective texture method.

3.4 FDK depth weighting
We enable the depth-weighting of the FDK algorithm (equa-

tion (1)) using 2D lookup textures (called dependent textures), one
for each principal projection orientation angle ϕk. Each dependent
texture is indexed by the slice voxel’s y and z-coordinates (the x-
coordinate is not relevant) and multiplied by the voxel value during
the accumulation step. We currently compute this map in software
as a pre-process, but a hardware implementation is possible..

4 RESULTS
Fig. 6 presents reconstructions we have obtained with our

implementation, while Table 1 presents the timings for these. The
numbers do not include the time required for filtering. We observe
that the full floating point GPU implementation of the backprojec-
tion can achieve speedups of 7.5 with excellent image quality,
while the approach using 8-bit rasterization is somewhat more
noisy, but gives a speedup of 37 (both compared to a fairly opti-
mized software implementation). We did not notice qualitative nor
runtime differences between the projective and texture spread

approach. This, however, could change over time, should hardware
manufacturers improve memory and computational bandwidths at
different rates, driven by computer game market demands

5 CONCLUSIONS
The impressive reconstruction performance and quality that

can be reached with the commodity GPU implementations seem
sufficient for many interactive clinical applications, such as image-
guided surgical interventions. The performance is near real-time
for smaller volumes, facilitating region of interest CT, and less than
a minute for full-scale CT datasets. Current work focuses on the
reconstruction of large volumes, with projections of 12-bit preci-
sion and greater. For this, we intend to use the channel splitting
technique described in [12]. Since GPU performance has so far
doubled every 6 months (i.e., triple of Moore’s law), we expect that
the gap between CPU and GPU approaches will widen even further
in the near future.

REFERENCES

[1] A. Andersen and A. Kak, “Simultaneous Algebraic Recon-
struction Technique (SART): a superior implementation of the
ART algorithm,” Ultrason. Img., vol. 6, pp. 81-94, 1984.

[2] B. Cabral, N. Cam, J. Foran, “Accelerated volume rendering
and tomographic reconstruction using texture mapping hard-
ware,” 1994 Symp. on Volume Visualization, pp. 91-98, 1994.

[3] K. Chidlow and T. Möller, “Rapid emission volume recon-
struction,” Proc. Volume Graphics Workshop 2003, pp. 15-26.

[4] M. Defrise, R. Clack, “A cone-beam reconstruction algorithm
using shift-variant filtering and cone-beam backprojection,“
IEEE Trans. Med. Img., vol. 13, no. 1, pp. 186-195, 1994.

[5] R. Fahrig, A. Fox, S. Lownie, D. Holdsworth, "Use of a C-
arm system to generate true 3-D computed rotational angio-
grams: Preliminary in vitro and in vivo results," Am. J. Neuro-
radiol. 18, pp. 1507-1514, 1997.

[6] L. Feldkamp, L. Davis, and J. Kress, “Practical cone beam
algorithm,” J. Opt. Soc. Am., pp. 612-619, 1984.

[7] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer
Graphics: Principles and Practice. Addison-Wesley, 1990.

[8] H. Hudson, R. Larkin, “Accelerated Image Reconstruction
Using Ordered Subsets of Projection Data,” IEEE Trans.
Medical Imaging, vol. 13, pp. 601-609, 1994.

[9] U. Kapasi, W. Dally, B. Khailany, J. Ahn, P. Mattson, and J.
Owens, “Programmable stream processors,” IEEE Computer,
vol. 36, no. 8, pp. 54-62, 2003.

[10] H. Kudo and T. Saito, “Derivation and implementation of a
cone-beam reconstruction algorithm for non-planar orbits”
IEEE Trans. Med. Imag., vol. 13, no. 1, pp. 196-211, 1994.

[11] W. Mark, S. Glanville, and K. Akeley, “CG: A system for pro-
gramming graphics hardware in a C-like language,“ Proc.
SIGGRAPH’03, pp. 896-907, 2003.

[12] K. Mueller, R. Yagel, "Rapid 3D cone-beam reconstruction
with SART by using texture mapping hardware," IEEE Trans.
on Medical Imaging, vol. 19, no. 12, pp. 1227-1237, 2000.

[13] J. Neider, T. Davis and M. Woo, The Official Guide to Learn-
ing OpenGL. Addison-Wesley, 1994.

[14] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. E.
Haeberli, “Fast shadows and lighting effects using texture
mapping,” SIGGRAPH’92), vol. 26, pp. 249-252, 1992.

[15] F. Xu and K. Mueller, “Accelerating popular tomographic
reconstruction algorithms on commodity PC graphics hard-
ware,” Trans. Nucl. Sci., (in review), 2003.

Figure 6: Slice of the reconstructed Shepp-Logan phantom for
various hardware implementations and contrast settings.

0.
5%

 c
on

tra
st

1%
 c

on
tra

st

floating point rasterization 8-bit rasterization

Implementation
Time

(1283 / 160)
Time

(2563 / 320)

Software (CPU) 1 min 16 min

GPU - full floating point 8 s (7.5) 2 min

GPU - 8-bit projective textures 1.6 s (37) 25 s

GPU - 8-bit texture spreading 1.6 s (37) 25 s

Table 1: Timning results for the various tested FDK implemen-
tations. The timings in the center column are for a 1283 vol-
ume and 160 projections, while the timings in the right-most
column are for a 2563 volume and 320 projections. Speedups
(over CPU) are given in parentheses.

