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Figure 1: The design, manipulation and simulation processes featured in our novel dynamic solid modeling approach.

1 Introduction and Contribution

In this research we systematically formulate a novel physics-based
solid model that can overcome many of the limitations associated
with conventional solid modeling techniques. Within our new dy-
namic modeling framework, free-form subdivision solids [2] are
equipped with continuous mass and stiffness distributions, internal
deformation energies, and other material and graphical properties
such as color and density. In contrast with mature modeling tech-
niques associated with subdivision surfaces, our solid formulations
based on subdivision transcend surface-based approaches by defin-
ing geometry and topology both in the interior and on the boundary
of solid objects. We have implemented a prototype design environ-
ment based on dynamic subdivision solids in which users can in-
teract with virtual objects via forces and simulate and analyze their
dynamic behavior either at run-time (for simple models) or offline
(for complex models).

2 FEM-based Subdivision Solids

2.1 Overview

In our FEM-based subdivision solids, each cell in the subdivided
solid is treated as a polyhedral finite element that has a continuous
material distribution throughout the cell. For example, the chair
model in Figure 1(b) shows the individual elements that comprise
the piece of furniture. Material distributions are defined continu-
ously throughout the entire solid space and can be modified any-
where by the user.

Like many subdivision surface algorithms, the subdivision solid
algorithm can be expressed as a global matrix multiplication:

d = Ap, (1)

wherep is a vector consisting of the components of the control
points; the matrixA is a sparse matrix whose entries are deter-
mined by the subdivision rules; and the vectord concatenates all
the components of the nodal points that are used to approximate the
limit solid after a certain number of subdivisions.

2.2 Dynamic Formulation

Our dynamic formulation starts from the following discrete form of
the Lagrangian equation of motion :

Mẍ + Dẋ + Kδx = fx (2)

The M, D andK matrices represent the mass, damping and in-
ternal energy distributions, respectively, of a modeled object. Note
that, ẋ and ẍ are the velocity and acceleration of the discretized
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objectx, respectively. Theδx is the companion displacement vec-
tor derived fromx. For small deformations, we can approximate
δx usingx − x0, where the subscript denotes the rest shape. For
large deformations, however,δx may take on various application-
dependent forms. Thefx collects the total external forces acting on
x.

We associate with the FEM equation of motion geometric and
topological quantities of a subdivision solid. Below, the vector
fd denotes the external forces acting on each nodal point. The
physics of the subdivision solid is subject to the constraints defined
by Equation 1:

Md̈ + Dḋ + Kδd = fd,

where, in general, the deformation can be characterized by
δd = Bd + Cd0, which is amenable to both large and small defor-
mations. Note that, two linear matrix operatorsB (B is also sym-
metric) andC approximatehigher-ordervariations such as stretch-
ing and bending andlower-ordervariations such as displacement,
respectively. This decomposition results in a much simpler formu-
lation forK that is no longer a function ofd. This has the desired
effect of greatly improving the time performance of our subdivision
solids. Let us further investigate the FEM equation:

A>Md̈ + A>Dḋ + A>KBd = A>fd −A>KCd0

A>MAp̈ + A>DAṗ + A>KBAp = A>fd −A>KCAp0

(3)
Using the FEM procedure and the discretized approximation of
continuous dynamic solids, we compute local element matrices and
iteratively evolve the time integration.

2.3 Discrete Dynamics Equations

Equation 3 is integrated numerically through time using an im-
plicit solver as follows. Discrete derivatives are computed us-
ing backward differences:̈pi+1 = (pi+1 − 2pi + pi−1)/(∆t2),
ṗi+1 = (pi+1 − pi−1)/(2∆t). We derive the time integration for-
mula (

2Mp + ∆tDp + 2∆t2Kp

)
pi+1 =

2∆t2fp + 4Mppi − (2Mp −∆tDp)pi−1, (4)

where Mp = A>MA, Dp = A>DA, Kp = A>KBA,
fp = A>fd −A>KCAp0 and the subscripts denote evaluation
of the quantities at the indicated time-steps.

It is straightforward to employ the conjugate gradient method [3]
to obtain an iterative solution forpi+1. The number of conjugate
gradient iterations per time-step can be increased to improve the
accuracy of the solver, but at the expense of efficiency.

2.4 Hexahedral Cells

After several subdivisions on the initial control lattice, the vast ma-
jority of cells in the subdivided lattice are hexahedra. We assign
one finite element to each such cell that appears in the subdivided
lattice. Each element consists of the eight vertices that comprise
the cell geometry and characterize the FEM shape functions. Shape
functions are used to define the continuous material distributions
across the cells. Since a MacCracken-Joy subdivision solid has
no global parameterization, each element is parameterized indepen-
dently of the other elements. We associate a tri-linear, eight-node
hexahedral element with each regular cell because of its conve-
nience and generality. The shape functions can be integrated using
Gaussian quadrature [3] and stored in the row vectorJ as follows:

J = [B0 B1 · · · B7]

The mass, damping and stiffness distributions are then computed
as follows. Letµ(u, v, w) andγ(u, v, w) be the mass density and
damping density functions, respectively, of one element of the solid.
Then,

M =

∫ ∫ ∫
µJ>Jdudvdw and D =

∫ ∫ ∫
γJ>Jdudvdw

are 8×8 element matrices.

2.4.1 Large and Small Deformations

Our dynamic model supports the realistic simulation of both large
and small deformations. The internal energy is separated into
stretching and shearing components to characterize an object’s re-
sistance to these types of deformation. The corresponding expres-
sion for the stiffness matrixK is

K =

∫ ∫ ∫
(αJ>J)dudvdw +

∫ ∫ ∫
(βJ>J)dudvdw

whereα(u, v, w) and β(u, v, w) are the elasticity functions that
control local tension and rigidity in the three parametric coordinate
directions.

The generalized force vectorfd can be obtained through the
principle of virtual work [1] done by the applied force distribution
f(u, v, w, t) and can be expressed as

fd =

∫ ∫ ∫
J>f(u, v, w, t)dudvdw

wheret is time.

2.5 Special Cells

The presence of high-valence (so-called “extraordinary”) vertices
in the control lattice results in the creation of non-hexahedral cells
in the subdivided solid (used to approximate the continuous solid in
the limit). Each of these “special cells” consists entirely of quadri-
laterals and has an even number of faces. For these cells we as-
sociate a group of quadrilateral surface finite elements with one
element per face. The element mass, damping and stiffness ma-
trices are assembled in a similar fashion to those of the normal el-
ements, except that each has only two parametric coordinate direc-
tions rather than three.

3 Conclusions

We have presented a new, dynamic FEM-based solid modeling
framework and have implemented a virtual sculpting system with
an intuitive, natural haptic interface based on the novel integra-
tion of subdivision solids and physics-based techniques. Future
research involving dynamic subdivision solids includes volumetric
morphing applications, scientific visualization, physical simulation
for flow dynamics and heat transfer, and others.
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