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Abstract—The image quality of low-dose CT scans typically
suffers greatly from the limited utilization of X-ray radiation.
Although the harmful effects to patient health arereduced, the
low quality of the reconstructions makes diagnosti difficult. In
previous work, we have demonstrated a method thatan restore
a low-dose image by ways of a database of refereniogages. This
database stored a set of pre-aligned non- and precupted
reference CT images to support a matched-referenceon-local
means (MR-NLM) filtering approach. While effective, the need to
store images with many different types of corruptios and
alignments greatly impeded system scalability. Inhis current
work, we have significantly simplified the databasevhich now is
comprised of just a set of regular-dose patient sea. Our present
scheme performs both alignment and artifact generan on the
fly and uses a sophisticated image and feature mationg scheme
to find good candidates to support our MR-NLM filtering scheme.

I. INTRODUCTION
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corresponding value from the artifact-free couraerpWe
therefore called this methddatched Reference-Based Non-
Local Means (MR-NLM). A shortcoming of this
implementation was that the database could groherdarge
since all images needed to be pre-aligned to ttgetamage
and also had to contain all possible types of aut¥ for
matching. In the current paper, we have aimeddoce these
problems and establish a more general framework.

Our present framework embodies a database of redoke
patient CT scans with no pre-alignment and pridifaant
simulation needed. Such scans are commonly availabl
clinical practice. For image restoration the orggamption we
make is that the low-dose CT condition is knownisTis
reasonable since CT scans are typically obtaindowimg a
known reconstruction routine under some geometry
configuration with a specific number of projectiord
mA/KV setting. In the current work we use fan-befiltered

n recent years a growing amount of research has besgackprojection (FBP) with a limited number of prtjens

dedicated to low-dose CT, motivated by the need
minimize the radiation exposed to patients whileximézing
the clarity of the reconstructed images to fad#éitaccurate
diagnoses. The adverse low-dose conditions grehtjlenge
conventional CT reconstruction algorithms, both |ytial
and iterative. They usually result in images wigélvere noise
artifacts and reduced feature detail. To solve tbisundrum,
one type of approach enforces better image qudiigctly in
the reconstruction process [6][12][17], while aretimproves
the image quality in a post-processing de-noisteg §7]. Our
paper belongs to the second category.

Neighborhood filters, in particular non-local meghd.M)
[1] have shown great promise for the restorationa$y low-
dose CT imagery [17]. To filter a pixgl with NLM, its
updated value is determined by the values of pigeisside a
local neighborhood arourm, calledsearch windowHere, the
contribution of ap; to p; depends on the similarity between

small regions around them, callpdtches Recently, to extend .

the search space beyond the current image, somécahed
imaging researchers have devised schemes thateufpliior
scans of the same patient to search for high-quafidates
[71[15][16]. We extended these ideas in [18], preipg an
approach that utilized an image databaseifférent patients
which eliminated the need for a prior patient sddre scheme
achieved good artifact mitigation for low-dose scacquired
from only 45 noise-free projections or 60 noisy jpotions
with SNR=10. The database itself contained pairartfact-
free and artifact-matched reference images. We dotimat
much better filtering results could be achievedusiyng the
latter to find good NLM matches for a contaminatadget
pixel, but then replacing the noisy target pixel Kkye
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twith Gaussian noise to simulate the low-dose catbt but

in practice any reconstruction setting can be sttpgo Our
new method still applies the effective MR-NLM sclesronly
now we perform alignment and artifact generationttom fly,
assisted by a much more sophisticated image anairéea
matching scheme. We therefore call our frameworkpsy
Database-Assisted CT Image Restoration (DA-CTIR).

The overall workflow of our method is illustrated Fig. 1.
It consists of three major components:
Offline database construction given an image database,
we create the global image feature descri@dior each
image and build up the global feature databaseisfaV
vocabularyV is also learned.
Online prior search: for the input image, generates(l)
with V and use it to query the global feature database to
find the M nearest neighbors (NN) as regular-dpgers.
The priors have the most similar artifact-free eontol.
Online de-noising align the regular-dose priors to the
input image as registered priolSRP and corrupt them
with the low-dose conditiorDRP) to form the prior pairs
<CRR, DRP>. Finally a refined MR-NLM is performed.

The organization of the paper is as follows. Irtisecl], we
describe the methodology including all technicaltads.
Experimental results are presented in sectionfdllowed by
conclusions and future work in section IV.

A. Local Image Feature Descriptor

Image matching is a fundamental operation in coempuision
and image processing and is often used for sceriehing
and object recognition. An image is usually repnése as a
high dimensional vector to describe the distinctiesa
properties of the image. In other words, an imagature
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Figure 1: Workflow of the framework: offline datad®e construction, online prior search and onlirealsing.

descriptor is employed to map one image from 2Dgena

space to high-D image feature space where imagehimgtis
performed. For instance, the GIST descriptor [14] ain
aggregated multi-scale oriented edge histogranhefimage
in a coarse spatial resolution. The Haralick texfigatures [5]
describe the global image statistics based on caroence
matrices with different pixel distance values. Altigh these

methods have been shown to work effectively in many

applications, they are sensitive to image rotatidistortion
and appearance of noise which usually occur ircase.

The scale-invariant feature transform (SIFT)atdee
descriptor [9], on the contrary, solves these comelt
captures the histogram of edges in a local neididod at
multiple levels of scale, characterizes salientaloand
transform-invariant image structures and encodesgestual
information. A SIFT feature descriptor is usuallyl28-D
vector encoding 8-orientation histograms of edgesr @lx4
blocks with each block of size 4x4, serving as aalo
descriptor of the image. In its original definitioronly
keypoint locations are selected. However, it waswshthat
dense SIFT vectors on a regular spaced grid wottetband
are more robust [8][10]. Here we also exploit tldsnse
feature scheme so that each image is representedfixgd
number of SIFT vectors.

In this work, we chose a grid spacing of 8 [Ex&o for

Build the visual vocabulary. Randomly select the local
feature descriptors of all images in the databaseé a
perform k-means clustering to leakncluster centers as
visual words {o, Vi, ..., Vka} and so form the visual
vocabularyV of the database.

Label the local feature descriptors to the visual wrds.
For each image, its local feature descriptors asigaed
to their corresponding closest visual words.

Perform vector quantization to generate a global
feature descriptor. Quantize each image’s visual words
to form histogram seriesH,, H;, ..,, Hx.1} of that image.
By concatenating the weighted histogram seriedpbat
descriptor is formed.

One drawback of this method is that the featuretsation
information in the original 2D image space is disea. To
make use of the spatial information and keep traickt in
multi-resolution, we exploit a spatial pyramid sofee [8] to
implement a “stronger” feature description. The tnul
resolution layers are formed by recursively suliting the
image space intaxa blocks. In a layet, for each block, only
the feature vector extracted from that block israggted to
the histogram of its specific visual word. In thigy, the
clustering is still performed in the feature spaekile the
histogram pyramid is built in 2D image space. Theight to

image size 256 32x32 SIFT vectors are generated while foeach histogram is inversely proportional to itschlavidth.

image size 512there are 64x64 SIFT vectors.

B. Spatial Pyramid Based Global Image Feature Desoript

To form a global image feature descriptor, tradidéibdense
SIFT algorithms follow the bag-of-feature method]. [&
includes the following steps to combine the locehtéire
vectors into a single one:

In this work, for clustering we tried severalvalues and
empirically chosek=50 for all databases. This number is
relatively small compared to other papers (wh&r00)
which is due to the fact that CT scans are notoasplicated
as natural images. We detl (two layers) an@=5 to prevent
the splitting of significant body structures [4]hd&refore, for
image size 256its global vector dimension is 1,300 while for

Extract the local feature descriptors.Generate a set of jnage size 52it is 2,600.

SIFT local feature descriptor&], S, .., Sv.1} to represent
each image.



C. Histogram Intersection and Multiple kd-Trees Basetbetween two patch vectors withepresenting the index within
Vector Matching a patch andG, being a Gaussian kernel with standard

In theonline prior searchgiven the learned visual Vocabmarydeviationa. h controls the overall smoothness of the filtering.
V and the computed local features of the target, stentask Th_e superscriptrp |nd|cates_ that the pl_xels originate from the
of the visual word assignmeris to find the nearest visual artifact-free registered prioCRP, while drp denotes the
word V, for each local featur8 in SIFT vector space (128-D). dégraded artifact matched registered pn&tP.
When processing a set of query images with a laugeber of In order_ tp further improve de-noising accuracy aemﬁ_ible
dense SIFT vectors, this process could be timeuwnimg. To More _eff|C|ent computations, we use three refindmen
speed up, we exploit the commonly usektree as the nearest Strategies. The first two are redundancy controfthogs
neighbor searching data structure kéktree is a binary tree designed originally for traditional NLM: (1) redugeatch
that recursively partitions and stores the nodes kin redundancy by applying PCA to high-D patch space an
dimensional space. Counting the number of visited hodes Project patches to a lower dimensional sub-spaceremgly
is used to measure the complexity of querying tée.t [14], (2) reduce search window redundancy by dsiogr
To handle the query for high-D nodes such as a SEefor unrelated pixels whose mean and variance valugdlﬁ@eent
and reduce backtracking, we employ a multiple ppiaic enough from the central pixel of the search windawthe
componenkd-trees method denoted PKD-trees to perform fa§drget image [2], and (3) consider multiple paigsif the
approximate search [13]. In essence, data is firsfected experiments) of reference images to broaden thetseange.

onto a PCA-reduced sub-space and arbitrary romtiordata
are applied to create multiple trees with differstructures.
The search order among trees is organized by mmaéting.
The maximum number of visited nodes is pre-set. We a
Householder matrix as the transformation matrixspeedup
arbitrary rotations, and 6 trees are built to acomtiate data
reduced to 30 dimensions for SIFT vectors.

In the same part, after generating a global feataotor for
the target scan, vector matching is performed #rcée for
similar priors in the database that anatomicallprahbterize
the same content as the target scan but may costaile,
rotation, and deformation variance. We found thatolgram
intersection performs better than a Euclidean desaneasure.
Therefore we implemented the matching with spgtjebmid
based histogram intersection which is counted biside and
visual word-wise and summed up to form a singlei&§8].

D. Online Denoising

Once the regular-dose prior (or reference) scanve teeen
found, the online de-noising process can be exdcitee first
register the prior scans with the target scan usliegSIFT-
flow registration algorithm [10] to make sure
neighborhoods of any pixel position are roughlgmadid. Then
we reconstruct the artifact matched prior imageimgushe
same low-dose condition.

The MR-NLM follows the standard NLM filteringckeme
but using a pair of artifact-free and artifact-niegid registered
prior images €RP, DRP> [18]. More specifically, the weight
generation is conducted by comparing patches fioatdrget
image and artifact-matched prior images, whileghel value
summation is performed in the corresponding locetim the
artifact-free reference images using the weighte &quation
of MR-NLM is as follows:
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Herex is the location of the target pixel apére the locations
of the candidate pixels with valupg W is the search window

the

In this paper, both search and patch windows érsize
7x7. For the Gaussian kernel, its standard deviatie 1 and
the smoothing paramethris chosen to bring best results.

. RESULTS

We constructed two databases: a head database 5@f8 2
images) by mixing the NIH Visible Human Head (15ames)
with a CT cadaver head (33 images) and a human lung
database of two patients (150 51ages). The images were
not pre-aligned. Their original reconstructions evetilized in
three different ways. (1) They served as the bfasis high-
quality projection simulation in fan-beam geomed(fign angle

= 20). We then picked a subset of these projection$ wit
Gaussian random noise propagated and reconstrtictsd
under the current low-dose condition. (2) We udeeht to
generate an experimental target scan subject tora¢ien. To
create a new scan different from any image in thmlthse,
the selected scan was first deformed or rotatethiiaic a real
clinical situation), projected, and then recondidcwith the
studied low-dose condition. (3) We used the defarme
uncorrupted scan to represent the gold standareviduation.

A. Performance of the Global Image Feature Descriptor

This experiment was conducted to test the perfocmar the
global image feature descriptor under low-dose itmms. In
Fig. 2, both a head scan and a human lung scan were
simulated (neither was in the database). I(b) wasted by
reconstructing a CT head scan after a twirl-likdodmation
(see I(a)) with 45 projections of SNR 15, and INi@s created
by reconstructing a human lung scan after rotafiiarcw (see
lI(a)) with 60 projections of SNR 20. Ideally, ttejacent
slices in the same dataset should be found aerefeimages.
The three matched prior images for the head s@shawn as
Fig. 2 (c), (d) and (e) and are consistent with expectations.
The case for the lung scan is similar. It confitimet moderate
deformations and low-dose artifacts (both streak mwise) do
not affect the global feature descriptor to exprdhe
underlying anatomical content of the CT images.

B. Performance of PKD-trees Data Structure

aroundx, and P is the patch size of each pixel. The patclFor the visual words learned in the first experim@&PKD-

similarity is measured by the Gaussian weightedlistance

tree data structures were created for matching ed&SiET



vectors to the visual words. Two configurations feducing
the dimension of the vectors were set: full 128 &0d By
generating a head scan with various changes suntta®n,
resizing, Gaussian noise and affine transform, wieaeted
100,000 SIFT vectors from it. As an approximatearse, the
error rate versus the maximum number of visitedesdd was
tested for both dimension settings and is plotied-ig. 3.

WhenM is above 200, the error rate is lower than 10%. We

also observe that dimension reduction of the dat@sdhot
affect the querying accuracy when the vector isspa
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Figure3: 6-PKD-tree error rai.

C. Performance of Refined MR-NLM

We tested the de-noising effect for both a headyemand a
human lung scan. In Fig. 2, I(f) and 1(g) are teendised head
image without and with refinement. The lung resudt®
shown as ll(c) and lI(d) for without and with refiment
respectively. For both cases, the basic methodnesbtfine
details well. The refined result keeps the samenéines
better as the area labeled in the box) qualityllbué reduces
the computational complexity greatly.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a general framework High
quality restoration of low-dose CT scans with aegah CT
image database. A spatial pyramid based global eénfiegture
descriptor, a local feature matching PKD-trees anefined
MR-NLM scheme were presented. As future work, PK&es
used for global feature vector, GPU acceleration féster

I: (a) ideal (b) input (c) prior 1

(d) prior 2

execution and a more complete database will bedest
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Figure2: Results with (I aCT head databa and (II) a human lung datab..



