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Abstract Parallel coordinates plot (PCP) is an excellent
tool for multivariate visualization and analysis, but it may
fail to reveal inherent structures for complex and large
datasets. Therefore, polyline clustering and coordinate sort-
ing are inevitable for the accurate data exploration and anal-
ysis. In this paper, we propose a suite of novel clustering and
dimension sorting techniques in PCP, to reveal and highlight
hidden trend and correlation information of polylines. Spec-
trum theory is first introduced to specifically design clus-
tering and sorting techniques for a clear view of clusters in
PCP. We also provide an efficient correlation based sorting
technique to optimize the ordering of coordinates to reveal
correlated relations, and show how our view-range metrics,
generated based on the aggregation constraints, can be used
to make a clear view for easy data perception and anal-
ysis. Experimental results generated using our framework
visually represent meaningful structures to guide the user,
and improve the efficiency of the analysis, especially for the
complex and noisy data.

Keywords Parallel coordinates plot · Dimension sorting
optimization · Visual representation

1 Introduction

Complex structures must be extracted, shown, and analyzed
for the multivariate data, but they can be difficult to visualize
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and graph. Parallel coordinates plot (PCP), first presented
by Inselberg et al. [15], is a great high-dimension (N-D) vi-
sualization tool. In this approach, each dimension is drawn
as a vertical line, therefore, each multidimensional point is
visualized as a polyline that crosses each axis at its corre-
sponding coordinates. This methodology facilitates the pre-
sentation of very complex N-D datasets in a single 2D im-
age. Usually, in virtually every scientific field dealing with
empirical data, people attempt to get a first impression on
their data by trying to identify and analyze groups of similar
behavior in the data, then clustering and dimension sorting
are extremely important to help reveal trend and correlation
information of major clusters. Aiming to create tools suit-
able for the analysis of large and complex datasets, we de-
sign new clustering algorithms and dimension sorting meth-
ods based on the spectrum theory, correlation properties, and
view-range metrics in the format of parallel coordinates. Our
experimental results demonstrate the potential visual abili-
ties of our framework to reveal data clusters and structure
aspects: information characteristics between adjacent axes
and across the entire coordinates can be shown in diverse
PCP forms for data analysis and exploration.

Our paper is organized as follows. Section 2 presents the
related work and a summary of our contributions. Our de-
sign and implementation details are described in Sect. 3.
Section 4 analyzes experimental results obtained by our
framework. In Sect. 5, we draw conclusions and discuss the
future work.

2 Related work

Many research scientists have addressed the N-D data visu-
alization and visual clustering in PCP. However, basic PCP
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tools for representing classes, such as multicolored brush-
ing [25], contain a major shortcoming: strong crossing and
overlappings of a large number of polylines severely hamper
the user’s ability to identify patterns in the data from its vi-
sual representation. Tackling with this problem, many clus-
tering methods, such as grand tour [26] and binning algo-
rithm [21], have been proposed to group nearby N-D poly-
lines into a single representative cluster. Colors and opaci-
ties are utilized to show polyline memberships in each in-
dividual cluster. Some approaches focus on multiresolution
techniques and impose the hierarchical brush or filter. Fua
et al. [10] have provided a multiresolution view of the data
via hierarchical clustering, and used a variation in PCP to
convey the aggregation information for clusters. However,
the band for each calculated cluster is not shown to be ag-
gregated and clear. Later, they have designed an interactive
brushing technique for minimizing clutter, which permits
the user to manually omit portions of the data during ren-
dering [11]. However, it is time-consuming for complicated
datasets. For the aggregation of polylines, Zhou et al. [27]
have proposed an optimization scheme designed to mini-
mize the curvature of polyline edges and maximize the par-
allelism of adjacent edges through an energy function. How-
ever, they only consider the line or point distributions with-
out a clear correlation detection between adjacent axes, and
fail to consider the ordering of entire coordinates.

Density-based approaches, such as [1], are very helpful
in achieving a distribution view of the data and can reveal
feature information that may be obscured by overlapping
polylines. Johansson et al. [16] have employed clustering
to reveal the inherent structure of the data, and displayed
the structure with high-precision texture through transfer
functions on the density plot. Later, they have further ap-
plied depth cues and density features to explore tempo-
ral datasets [17]. However, the overlapping resulting from
crossings of polyline segments may lead to the overaggra-
vated cluttering, or the inappropriate dimension sorting or-
der may fail to reveal nice clear bands. Therefore, reform-
ing positions of coordinates provides an alternative method
to reduce the clutter of bundles and reveal hidden corre-
lations. Novotny [22] has shown that the user appreciates
the effort to gather related polylines for prominent views
and supported that the ordering technique provides solutions
for a clear visualization. Peng et al. [23] have restructured
datasets in an automatic or semiautomatic manner to mini-
mize clutter for the multidimensional data visualization us-
ing a dimension reordering technique.

2.1 Contributions

The goal of our framework is to provide novel clustering
and dimension sorting techniques for the multivariate data
to reveal clusters and correlations in PCP. Our framework

well-implements the following tasks: (1) examine correla-
tions with explicitly mathematical definitions between vari-
ables represented by neighboring axes; (2) aggregate poly-
lines to reduce visual clutters; and (3) represent each indi-
vidual cluster for a easy understanding of data properties or
relationships. The specific contributions and benefits of our
framework are as follows:

– A spectrum based clustering method first applied in PCP,
conveys major trends across the entire axes and helps to
eliminate outliers and noises.

– A new correlation based dimension sorting technique
with the corrgram, accurately and efficiently recognizes
and reveals various predefined correlations between adja-
cent axes in PCP.

– A new metric, view-range matrix, specifically defined for
dimension sorting in PCP, generates the optimal coordi-
nate order to maximally increase the aggregation of poly-
lines.

– A novel dimension sorting approach using spectral clus-
tering theory, reveals a clear view of clusters by maxi-
mally extending the measure distance between clusters.

3 Design theory and algorithm

In this section, we focus on the design details: clustering of
polylines, dimension sorting, and visual representation.

3.1 Theory and algorithm of spectral clustering

Spectral clustering has solid theory foundations. Donath and
Hoffman [5] have first suggested to construct graph parti-
tions based on eigenvectors of adjacency matrix. Fiedler [7]
has further suggested to use eigenvectors to partition a
graph. Since then, spectral clustering has been discovered,
rediscovered, and extended in different areas. The success of
spectral clustering is mainly based on the fact that it does not
make strong assumptions on the form of clusters and then be
easily applied to various cases. Two most common objective
functions used to build graph partitions from eigenvectors of
the adjacency matrix are Ratiocut [12] and the normalized
cut Ncut [24].

Spectral clustering algorithm The main tools for spec-
tral clustering are graph Laplacian matrices. There exists a
whole field dedicated to the study of those matrices, called
spectral graph theory [3]. Given a dataset consisting of n

data points x1, . . . , xn, which can be arbitrary dimensions,
we measure their pairwise similarities sij = s(xi, xj ) by
some similarity function which is symmetric and nonnega-
tive, and then denote the corresponding similarity matrix by
S = (sij )i,j=1,...,n. Parameter k is the total number of clus-
ters we want to construct and W is the weighted adjacency
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matrix of the constructed similarity graph. With respect to
the theory of Laplacian eigensystem, the Laplacian of ma-
trix is defined as L = D − W , where D is a diagonal degree
matrix and its diagonal entries are given by summation of
the rows of W . The normalized Laplacian is defined as

L = D− 1
2 LD− 1

2 = I − D− 1
2 WD− 1

2 .

Then we compute the first k eigenvectors u1, . . . , uk of L,
and let U ∈ Rn×k be the matrix containing the vectors
u1, . . . , uk as columns. Next, for i = 1, . . . , n, let yi ∈ Rk be
the vector corresponding to the ith row of U , and then clus-
ter the points (yi)i=1,...,n in Rk with the k-means algorithm
into clusters C1, . . . ,Ck . Finally, we have the clustering re-
sult with clusters A1, . . . ,Ak , where Ai = {j |yj ∈ Ci}. The
main idea of this algorithm is to change the representation
of the abstract data points xi to points yi ∈ Rk . Due to the
properties of the graph Laplacians, this change of represen-
tation is useful to enhance the cluster-properties in the data,
so clusters can be trivially detected in the new representa-
tion.

Spectral clustering merits Results obtained by spectral
clustering often outperform the traditional approaches be-
cause of the application of graph Laplacians: there are no
issues of getting stuck in local minima or restarting the al-
gorithm for several times with different initializations [3].
Moreover, spectral clustering can be easily adapted in PCP,
and be solved efficiently by standard linear algebra methods.
In this paper, we first apply the spectrum theory in PCP as a
new clustering and dimension sorting technique, to convey
major clusters and trends.

3.2 Data preparation

All the datasets and visualization display used in this paper
are courtesy of the XmdvTool [25]. Because the plot of poly-
lines is based on the interpolation of consecutive pairs of
variables, data scaling is necessary in order to reveal mean-
ingful structures. Thus, normalization is an important data
preparation process in our framework.

3.3 Clusterings of polylines

As the number of data record increases, the identification
ability of potentially clusters of data items is seriously dam-
aged because of the overlapping of polylines in PCP. There-
fore, clustering is extremely important to enhance the pre-
sentation of useful information and to avoid displaying ir-
relevant one.

3.3.1 Dendrogram based k-means clustering

One of the most popular clustering methods is the k-means
clustering, but it has major issues—the strong dependency
on the initial setting of the cluster number k and the random
initialization of centroids. To solve these problems, we build
a similarity matrix and examine interior relations to con-
struct a dendrogram, which can automatically find the best
cluster number k for various datasets. We adapt the cluster
similarity parameter S proposed in [6]:

S(C1,C2) =
∑

cos(d1, d2)/
(
size(C1) × size(C2)

)
,

where d1 and d2 are the average distance between elements
of cluster C1 and C2. We follow these steps: first, set the
threshold wh; next, compute similarity between all pairs of
clusters (each point is a cluster at the initial step), merge
the most similar two clusters together and update the simi-
larity matrix M ; then repeat merging and updating until all
values in M are smaller than wh; and automatically output
the best cluster number k at last. In general, large wh leads
to more clusters. We experimentally find that values in the
range 0.4 ≤ wh ≤ 0.6 generate reasonable results.

3.3.2 Spectrum based clustering

We first propose an approach of clustering data using spec-
tral synthesis, for clutter reduction and cluster detection in
PCP. Our design enables an alternative PCP clustering view
and provides great potentials in exploring and revealing un-
derlying patterns.

The equally spaced vertical lines are the axes of the par-
allel coordinate system and the polygonal line segment is
a plotted point. Note that spectra have a very natural rep-
resentation in PCP with a parallel axis for each spectrum
wavelength. The theory of spectrum based clustering is in-
spired by a basic spectral synthesis theory that any curve
can be reconstructed by trigonometric functions (with pa-
rameters of amplitude, frequency, and phase-shift). After de-
forming polylines into polycurves for each data point, as
shown in Fig. 1a, our framework decomposes each poly-
curve S into a series components: S = ∑n

j=1 Tj , where n

Fig. 1 Spectrum based clustering design. (a) Illustration of spectrum
generation from polylines. (b) The k-means (k = 3) clustering result in
the parameter space formed by the first component: vs1 = (A1,ω1, ϕ1)
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is the total number of components (larger n can generate
more accurate curve reconstruction by preserving fine de-
tails), and Tj (t) = A × Tri(ωt + ϕ) is a series trigonometric
functions defined by the amplitude A, angular frequency ω,
and phase ϕ. Because the selection standard for each com-
ponent is to minimize the sum of squared errors at current
step, the ordering of components is naturally fixed during
the computation. According to our experiments, in general,
at most top three components can visually reconstruct an
accurate polycurve for clustering. We define a trigonomet-
ric function based vector v to describe the selected first m

components for each polycurve: v = (vs1, . . . , vsm), where
vsi = (Ai,ωi, ϕi) and m ≤ 3 for most cases. Therefore, as
shown in Fig. 1b, polylines are transformed into correspond-
ing points in a new parameter space formed by the first
component, and we apply k-means clustering algorithm to
group points together. More components can be further used
for the hierarchically clustering refinement. An advantage of
our design is that our method mainly focuses on the shape of
each trend across the entire axes rather than the distribution
of data points at the coordinates (e.g., traditional k-means
clustering in the high-dimensional domain), which may help
to reveal hidden structures and trend associations in multi-
variate datasets (e.g., Fig. 8).

3.4 Dimension sorting of parallel coordinates

Although PCP offers simple visualization and interactions
for the user to explore the high-dimensional data, dimension
sorting is inevitable and critical to create the illuminating re-
sult for typical data analysis. How to find the best ordering of
coordinates is an important question in PCP. There are var-
ious methods trying to solve this problem, such as random
swap or greedy algorithm with minimal outliers [22], and
screen-space metrics [4]. In this section, we propose three
dimension sorting optimization algorithms based on matri-
ces of correlation, view-range, and spectral clustering, re-
spectively. In addition, pseudocolored maps with respect to
the variable ordering are rendered to facilitate the perception
of structures in PCP.

3.4.1 Visual display of dimension sorting optimization

In order to have the optimization of dimension sorting, we
first build the user preferred matrices to describe relations
between any two attributes of the input dataset. Then, for
the exploratory visual display, we follow two general princi-
ples: (1) the multi-color display: render the value of a matrix
with different colors to depict its sign and magnitude, with
the purpose to improve the ability of visual perception; and
(2) the effect-ordered data display [9]: reorder variables in a
matrix, so that “similar” variables are positioned adjacently
for depicting patterns of relations among variables in ma-
trices directly, particularly when the number of variables is
moderately large.

Fig. 2 Major correlation patterns between adjacent axes [14]: (a) con-
stant, (b–c) direct and inverse linear, (d) hyperbola, (e) parabola, and
(f) ellipse styles, are shown in PCP

3.4.2 Correlation based dimension sorting

We first propose a correlation based dimension sorting us-
ing some predefined correlation types, as shown in Fig. 2.
Moreover, the application of the corrgram, an exploratory
display for correlation matrices [8], makes it easy to reduce
the clutter of bundles and reveal hidden correlations. For
large or complex datasets, the corrgram may have advan-
tages especially for exploratory purposes, because it shows
all correlations, rather than just a low-dimensional summary.
However, the traditional corrgram only works for the linear
correlation. For more general applications, we modify it to
detect and score various nonlinear correlations as follows:
for the point sets (x, y), we redefine x′ = f (x), where f

is the precalculated correlation functions (e.g., hyperbola or
parabola), and then calculate the Pearson correlation coeffi-
cient of new point sets (x′, y). Based on coefficients among
variables, the corrgram forms a pseudocolor map by defin-
ing +1 direction as a perfect positive (increasing) relation-
ship while −1 direction as a perfect decreasing (negative)
relationship, and 0 as undefined correlation (random noise)
for both linear and non-linear correlations. Figure 3 shows
two advantages of our modified corrgram: it shows accu-
rate correlations between any two axes even under a very
noisy situation, and it qualitatively represents the level of
noise. We further define two sorting criteria for different
user preferences: searching for a dimension sorting vec-
tor s of n dimensions, which satisfies the following equa-
tions: max(

∑i=n−1
i=1 Ssisi+1), named sorting by value to only

highlight the direct correlations, or max(
∑i=n−1

i=1 |Ssisi+1 |),
called sorting by magnitude to emphasize both direct and
inverse correlations, where Ssisi+1 is the coefficient score be-
tween two adjacent coordinates.

This design can be easily extended as a hierarchical ap-
plication to find subcorrelations. For complicated datasets
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Fig. 3 Properties of our modified corrgrams. (a)–(c) A 100-item
and three dimensional synthetic dataset with different levels of noise,
(a) 5 %, (b) 50 %, (c) 100 %. There is a direct linear correlation be-
tween first two coordinates, and a parabola correlation between the last
two coordinates. (d)–(f) Corresponding pseudocolor maps (corrgrams).
Scores proportionally head to zero with the increasing noise level

with a mixture of several individual clusters (each individ-
ual cluster with a unique correlation), there might be no
clear correlation view detected by our method if using en-
tire data items. Therefore, if all the values shown in the cor-
rgram are in the weak correlation range (e.g., between the
range [−0.3,0.3]), our system will automatically apply our
dendrogram based k-means clustering algorithm to generate
clusters. Then the same dimension sorting method is applied
for each cluster, and the user can interactively select and an-
alyze a cluster of interest at one time.

3.4.3 View-range matrix based dimension sorting

Hauser et al. [13] have provided a bar chart-style rendering
of a histogram on each axis in PCP. Inspired by them, we
present a view-range matrix to find the best coordinate or-
dering with the maximally local aggregation of polylines.

As shown in Fig. 4a, for each bin, a vector with two dis-
tance elements: vr(d1, d2), is calculated and recorded to de-
scribe the view-range between adjacent axes. The distance
element d , for each axis, is defined to record the slope of
polylines between axes, measured as the vertical distance.
The steepest line going up or down covers the entire height
of the coordinate, and can thus have a vertical distance in
the range [−h,h] with a fixed view point (value 0 at the
middle point of the selected coordinate). Therefore, for each
vr(d1, d2), we have the view range −h ≤ d1, d2 ≤ h, and the
total view range of 2h + 1 bins. Thus, we can do a reason-
able job of placing the variable axes in a well-defined opti-
mal unidimensional order through building the view-range
matrix with the following criterion: any two axes can form a
axis pair, and for each axis pair, we define the length sum of

Fig. 4 Illustration of the generation of view-range matrix. (a) Defini-
tion of view-point matrix. View-range is calculated and recorded for
each bin (a grid with the total polyline number inside itself) between
adjacent axes. (b) A simple case to show that smaller sum value of ver-
tical distance (direct linear correlation) has better parallelism than the
larger one (inverse linear correlation)

view-range dt as follows:

dt =
bin=2h∑

bin=0

�dbin =
bin=2h∑

bin=0

|d1 − d2|bin,

which describes the gathering situation using the sum of the
view-range length of all bins. A small dt means good gather-
ing of polylines, so the minimization of dt will generate the
maximal aggregation of polylines between axis pairs. We
resort variables using this criterion to find the best sorting
order.

Our framework also supports to find the optimal dimen-
sion ordering with the minimal length sum of view-range
between adjacent coordinates under the bin-level. Therefore,
all the polylines are maximally gathered between neighbor-
ing axes for each bin, which can reveal and highlight hidden
structures in a subview. Moreover, because the view-range
matrix is calculated based on bins at coordinates and the bin
number can be flexible selected by the user, it is very suit-
able for the aggregation optimization of datasets with com-
plex components. By setting the distance unit h according
to different requirements, our framework can flexibly pro-
vide multi-level hierarchical views for datasets, as shown in
Fig. 4b. If we minimize the length of each bin into the pixel-
level, each polyline (or overlapped polylines) will form a
single bin. The length of view-range dt will be the sum of
absolute vertical distance between end points of each poly-
line, which can be used to calculate angles between the given
axes [4]. Therefore, our algorithm supports to find the best
dimension ordering with the optimal parallelism to the hori-
zontal axis of PCP, which may help reduce the visual clutter.

After the generation of the view-range matrix, we adapt
similar display style as the corrgram to visualize all possible
combinations of the length sum of view-range (dt ) using dif-
ferent colors and to find the best ordering, named viewgram
(Fig. 5Left). Our method, based on the distance associated
within the total 2h + 1 bins, considers the local aggregation
to generate the optimal visualization results. However, the
length sum of view-range (dt ) is easily affected by outliers in
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Fig. 5 Viewgram-style visualization of the view-range matrix, gener-
ated from the car dataset. (Left) The viewgram shows all combinations
of the length sum of view-range (dt ). (Right) Subhistogram (top) of
a bin of interest shows the distribution of view-range. The tail (red
arrow) in the subhistogram can be automatically removed to narrow
down the view-range, based on a cutting parameter. Multiple 1D sub-
histograms (bottom) reveal the sublevel relations between Cylinders
and Year

each bin, thus, subhistograms can be used to remove outliers
and to refine the view-range matrix by eliminating the noise,
as shown in Fig. 5Right. Meanwhile, for a selected axis pair,
subhistograms reveal the distribution of view-range inside a
bin of interest, which can be used to explore different distri-
bution types between adjacent axes with similar view-range
length. Thus, our framework makes it easy to reveal sub-
level relations of interest when there are no obvious over-
all correlations between adjacent axes. For example, Fig. 5
shows relations between variables Cylinders and Year of the
car dataset, detected and highlighted by 1D sub-histograms:
from 60’s to 80’s, the production of cars with 4 cylinders is
very stable with slightly increasing, while the production of
cars with 8 cylinders keeps dropping after mid-1970s.

3.4.4 Spectral clustering based dimension sorting

Spectral clustering is a good method that satisfies (1) invari-
ance clustering during coordinates sorting; (2) close clus-
ter segments to human perception, and (3) robustness to nu-
merical noise in the dataset. Therefore, we develop a robust
spectral clustering based dimension sorting scheme with
three main steps: first, similarity graphs are appropriately
designed to generate accurate clustering results; second, the
number of the cluster/segments is estimated based on the
analysis of the behavior of the Laplacian spectrum, which
has a high consistency toward human perception; third, a
spectral clustering based dimension sorting scheme helps to
reveal a clear cluster view.

Similarity graphs design First step is to transform a given
set x1, . . . , xn of data points with pairwise similarities sij
into a graph. With the goal of modeling the local neigh-
borhood relationships between data points, we construct-
ing a fully connected graph as similarity graph: simply con-
nect all points with positive similarity with each other, and

Fig. 6 Eigencurves for estimating perceptually consistent number of
cluster segmentations for different data distribution demos. Eigen-
curves plot the relationship between eigenvalues and the number of
clusters. The first point on the curve with rapid eigenvalue change sug-
gests the number of clusters for perceptually clustering. The points
highlighted in red circles on the curves suggest the number of clus-
ters for each scatter plot of data. We can see from the figure that the
suggested NS matches the preferred number of clusters by human per-
ception. Note that, NS denotes number of clusters

then weight all edges by sij . A Gaussian similarity function,

s(xi, xj ) = exp(−‖xi−xj ‖2

2σ 2 ), with the parameter σ control-
ling the width of the neighborhoods, is use to represent and
model the local neighborhood relationships. Other popular
graph design, such as ε-neighborhood graph and k-nearest
neighbor graph can be easily embedded into our framework.
Although choosing a good similarity graph is not trivial and
spectral clustering may be unstable under some choices of
parameters for neighborhood graphs, our design can pro-
duce good results for all the applied cases in our paper.

Estimation of k-number Choosing the number k of clus-
ters is a general problem for spectral clustering. We describe
a simple but effective approach based on the analysis of the
behavior of the Laplacian spectrum. The goal is to choose
the number k such that all eigenvalues λ1, . . . , λk are very
small, but λk+1 is relatively large. Let 0 = λ1 ≤ λ2 . . . λn

be the Laplacian spectrum of the model, where λi is the
ith eigenvalue and Dif (i, j) = λj − λi . Then we have the
following observation: the number i is likely to coincide
with the number of components in a natural segmentation
when there is a dramatic increase in Dif (i, i + 1) for the
first time. We provide the following clustering experiments
for verifying the observation. We define the curve plotting
of the eigenvalue versus the number of cluster segments as
an eigencurve. Figure 6 displays eigencurves for cluster seg-
ments of different data distributions.

Optimization of dimension sorting After getting the clus-
tering result for the input dataset, the center of each clus-
ter, which is defined as the average representative data point
within each segment, is discovered by a center hunting algo-
rithm: for clusters A1, . . . ,Ak generated from spectral clus-
tering, we find each cluster center pci of Ai using the av-
erage Eulerian distance, pci = 1

Ni

∑
m=1,...,Ni

pm, where Ni
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Fig. 7 Illustration of the spectral clustering based dimension sort-
ing. (a) Illustrative image of distance calculation. Red points are cen-
ter points of clusters (pc). Yellow line highlights the distance used to
compute the average distance between clusters dCbt , while blue circle
shows all data points used to calculate the average distance within each
cluster dCin . The optimization results of the total cluster-distance (ds )
between adjacent axes, (b) without and (c) with the weighting scheme
(wbt = 3, win = 0.5). By comparison, using different weighting values,
our framework finds an optimization result with more cluster separa-
tion (wbt = 3) but less gathering within the cluster (win = 0.5). Clusters
are highlighted using different colors

is the total number of data points inside the cluster Ai , and
pm is the data point with m = 1, . . . ,Ni .

With the goal of maximally (1) extending the distance
between clusters and (2) aggregating data points within each
cluster, the following equation is used for the optimization
of dimension sorting in PCP: for all the classified data points
plotted in the scatter plot between any two coordinates, we
calculate the total cluster-distance ds ,

ds = dCbt − dCin ,

where dCbt is the average distance between clusters, while
dCin is the average distance within each cluster.

As shown in Fig. 7a, dCbt is defined as

dCbt = 1

C2
k

∑

i,j=1,...,k

dAij
= 1

C2
k

∑

i,j=1,...,k

‖pci − pcj‖,

while dCin is computed using

dCin = 1

Ni

∑

m=1,...,Ni

‖pm − pci‖,

where C2
k is the total combinations of k clusters, and pci ,

pcj are the center points of clusters Ai and Aj .
We have further designed weighting parameters to mod-

ify the distance measurement equation to generate diverse
optimization sorting results as follows:

ds = wbtdCbt − windCin ,

where weighting parameters wbt, win ≥ 0, are used to con-
trol the weighting proportion of dCbt and dCin , respectively.
Parameter settings with specified properties, are able to con-
trol the optimization styles of dimension reordering, which

will generate different sorting results to satisfy various re-
quirements of the user. We show experimentally that our
weighting scheme is useful in practice to generate various
optimally sorting results, as shown in Figs. 7b and 7c.

Large cluster-distance ds between adjacent axes means
good gathering of polylines inside each cluster and maximal
separation between clusters, so the maximization of

∑
n ds

will optimally generate the local aggregation in each cluster
and the global separation between clusters with the final di-
mension ordering result n. After the generation of the spec-
tral clustering based matrix using the cluster-distance (ds )
between adjacent coordinates, we adapt the same display as
the corrgram to visualize all possible combinations of the to-
tal cluster-distance (ds ) using different colors, named spec-
gram. Then the specgram is used to find the best dimension
sorting order n: the search are propagated across the axes
from left to right to determine the ordering of coordinates,
using the greedy algorithm.

3.5 Implementation

In order to maximize the system efficiency, our framework
(1) implements the clustering, the optimal coordinates or-
dering, and distribution view (defined in Sect. 4) as the of-
fline procedure (couple seconds for most cases), (2) allows
the user to interactively adjust polylines and set parameters,
and (3) accelerates texture rendering of polylines in real time
using graphics hardware. Mathematical calculations are im-
plemented using Matlab and C++ on CPU, while interactive
operations and real-time rendering are implemented using
OpenGL and Cg libraries on GPU.

In general, finding an optimal ordering of axes for paral-
lel coordinates is equivalent to the traveling salesman prob-
lem, and thus NP-complete [18]. During the implemen-
tation, for each dataset, we take the exhaustive permuta-
tion calculation between axes for the generation of cor-
relation, view-range and cluster-distance matrices as pre-
computation. The computation of specified matrix for graph
view, is very fast and efficient [8]. The generation of both
view-range and cluster-distance matrices, according to the
definition, is a linear efficiency between each axis pair. The
exhaustive permutation of coordinates ordering is only per-
formed once, and the computational time mainly depends
on the item number and dimensionality of datasets. Using
these computed constraint matrices, our system is able to ef-
ficiently optimize the dimension ordering to create a good
display for the analyst.

Another time-consuming step is the creation of distribu-
tion view, which relies on the pixel resolution. Following the
experimentation in [19], a prefixed viewport of 512 × 384
pixels with a neighborhood radius of 12 pixels is set, which
provides good results with full resolution for most datasets.
For the visualization, the computational time to create plot
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textures as visual views mainly depends on the viewport
size, item number and dimensionality of the data. For exam-
ple, it only takes approximately 320 ms to create a polyline
texture for a five-dimensional dataset containing 3,800 data
items in our prefixed viewport.

Applying the user designed transfer function to an ap-
pointed texture works as a specified mapping from an N-D
vector to the specified color and opacity of each pixel. The
information forms a texture stored in the framebuffer, which
will be recomputed and redrawn on the screen in real time
when the transfer function changes. Although some calcula-
tion, such as the generation of constraint matrices and distri-
bution view, could be easily accelerated by shifting them to
GPU for the parallel computation, our strategy is fast enough
for interactive operations and efficient display.

4 Experimental results

In this section, we test some datasets to demonstrate the de-
sign merit of our framework (because of the page limita-

Fig. 8 Spectrum based clustering for the 1523-item, five-dimensional
Nasdaq dataset with variables Open price, and Close price for today
and the next three days. Clustering results using (a) the k-means clus-
tering and (b) our spectrum based clustering methods, both shown in
the format of parallel coordinates. Clusters are illustrated by different
colors

tion, more experimental results are shown in the additional
material). Aiming to obtain good visual-representations of
large and complex datasets, our framework shows a clear
quantization level of the distribution of polylines (distribu-
tion view) for the accurate visual perception with less clutter
(e.g., Fig. 9b). Inspired by [1], different cluster densities are
visualized with different opacities, where a high opacity cor-
responds with a major cluster containing large data points.
The user can flexibly set colors and opacities through our
framework.

4.1 Experimental results of clustering

Our spectrum based clustering method can accurately de-
tect and classify interior trends across the entire axes, re-
vealing helpful information for the user. For example, for
the Nasdaq dataset, by comparison with the clustering di-
rectly according to the item values (e.g., k-means clustering
based on the price differences), our spectrum based cluster-
ing method accurately detects three major trends of interest:
up-down trend, down-up trend, and smooth-trend, provid-
ing much useful investment information for the analyst, as
shown in Fig. 8. Trend information is more important than
the clusters of stock price because it reflects the price change
of stocks with time, rather than the simple capital value. This
function is suitable for various time-series datasets to reveal
data variation over time [2].

Clustering comparison In order to show the merit of spec-
tral clustering by comparison with other clustering algo-
rithms, especially for the high-dimensional data, we use dis-
tance measures, including clustering error (CE) and varia-
tion of information (VI) [20]. CE, as an intuitive way to
compare clusterings, is to calculate the clustering error af-
ter an optimal matching of clusters. VI is a recently pro-
posed clustering criterion based on information theoretic
concepts [20]. It measures the amount of information that
we gain and lose when going from one clustering method
to another clustering technique. We compare our spectral

Fig. 9 Correlation based dimension sorting for the venus dataset. Results of the (a) corrgram, (b) distribution view, and (c) PCP with dendrogram
based k-means clustering. The red color in (c) highlights the major trends shown in (b)
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clustering design with both k-means and our modified den-
drogram based k-means clusterings, using CE and VI. Our
spectral clustering design (1) has good external cluster vali-
dation (comparing the clustering result to its corresponding
true clustering) and nice stability based cluster validation
(the stability of each cluster); and (2) keeps scale invariant
with less outlier effects.

4.2 Experimental results of dimension sorting

Dimension sorting methods are built on the optimization of
various constraints, which naturally guarantee the best result
under certain conditions with specified constraints.

Correlation based dimension sorting We first demonstrate
the ability of our framework for the visual representation
of large and complex dataset by using the 8784-item, five
dimensional (Latitude, Longitude, Velocity, Density, and
Temperature) venus dataset. The corrgram (Fig. 9a) clearly
shows that (1) Latitude and Longitude are less correlated
because of the random sampling; (2) Velocity, Density, and
Temperature form a relatively homogeneous grouping with
high positive correlations, while Velocity and Temperature
have the highest correlation among all the correlations; and
(3) only Density has a weak positive correlation with the po-
sition especially with Latitude. The quantization view of the
distribution of polylines (Fig. 9b) shows that our optimal
correlation based dimension sorting method reveals some
clear bands generated by the aggregation of polylines, which
an arbitrary ordering of coordinates fails to reveal. The clus-
tering view in PCP (Fig. 9c) further supports the observa-
tion of major trends, and reveals geographical sampling po-
sitions.

View-range matrix based dimension sorting We test our
design for the wine dataset, which contains a total of 4898
items. For each sample, there are a total of 11 physio-
chemical features (Fixed acidity, Volatile acidity, Citric acid,
Sugar residue, Chlorides, Free sulfur dioxide, Total sulfur
dioxide, Density, pH, Sulphates, Alcohol) along with the
Quality. By comparison with original dataset (Fig. 10a),
some intriguing relations are shown with highly gathered
polylines (between the most relevant factors) using our de-
sign. As shown in Fig. 10b, using the view-range matrix with
a user selected histogram number, it is clear that alcohol can
be increased or decreased by monitoring the sugar concen-
tration, and an increase in Sulphates may be related to the
generation of Citric acid and pH, which is a very important
factor to improve the wine aroma. Some strong correlations
are directly detected from the view-range matrix with the
pixel-level, as shown in Fig. 10c. For instance, an increase in
the Alcohol tends to result in a higher quality wine based on
the Quality and Alcohol correlation, and the residual sugar

Fig. 10 Results of dimension sorting using the view-range matrix.
(a) The original wine dataset. (b) The dimension sorting result using
the view-range matrix with a user selected histogram number (coarse
level). (c) The dimension sorting result using the view-range matrix
with the pixel-level (fine level, each bin has a single item point of the
polyline)

in wine could be controlled by adjusting the sugar fermenta-
tion environment (carried out by yeasts) following Sugar and
Fixed acidity correlation. All the explored relevant-factors
or correlations can be used to improve the wine quality.

Spectral clustering based dimension sorting For a five di-
mensional (MPG, Cylinders, Horsepower, Weight, and Ac-
celeration) car dataset with 392-item, we apply the spectral
clustering based dimension sorting to accurately reveal and
clearly visualize major trends of clusters. Figure 11b is the
optimization result of spectral clustering based dimension
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Fig. 11 PCP views of the car dataset using (a) a random ordering
and (b) our spectral clustering based dimension sorting. Each cluster
is specifically colored

sorting in PCP, which clearly shows three major clusters.
By comparison with a random ordering result (Fig. 11a),
our method greatly reduces the clutter and gives the user an
immediate sense of correlations: (1) Cylinders, Weight, and
Horsepower are most positively correlated, because a heav-
ier car would have a larger engine providing considerable
housepower; (2) Acceleration and Cylinders have strong
negative correlations only for high values of Cylinders, and
little or no correlations for lower values; and (3) MPG has
weak positive correlations with Acceleration. In addition,
the spectral clustering can also give the user a clear view of
distributions and sizes of each cluster (e.g., the red cluster
has the largest data items).

All the experimental results show the usability of our
framework, with the new defined clustering and dimension
ordering approaches, for the accurate and efficient explo-
ration and analysis of various datasets.

5 Conclusions and future work

In this paper, we have proposed several novel clustering and
dimension sorting techniques in the format of parallel coor-
dinates, for conveying meaningful aspect/features of multi-
dimensional data. Our framework improves the ability of
structure revealing in PCP, through the clustering of poly-
lines, optimization of dimension sorting and visual represen-
tation. For the clustering, a dendrogram based k-means clus-
tering can automatically select the best cluster number and
reach a consistent clustering result. A new spectrum based

clustering method is an alternative way to show meaning-
ful and continuous trend/cluster patterns across all axes. Us-
ing it, an analyst can easily manipulate each cluster and ob-
tain an optimal bundle distribution view of the data across
all coordinates. We propose the optimization of dimension
sorting using various metrics to minimize the visual clutter.
Therefore, similar variables are positioned adjacently while
dissimilar ones are separated, making patterns of interest re-
veal. These techniques can efficiently and accurately assist
the user to distinguish reveal hidden structures in PCP, espe-
cially for complex cases. All design methods have fast and
easy implementations. Final results demonstrate the visual
abilities and merits of our framework.

Further work includes several improvements of our
framework: (1) GPU and parallel acceleration for compu-
tationally costly steps, such as matrix calculation, because
we only calculate pair of axes; and (2) more user-friendly in-
terface widgets to assist the customized design. In addition,
appropriated case studies may further generate new research
directions.
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