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Abstract

Color mapping and semitransparent layering play an important role iy misumal-
ization scenarios, such as information visualization and volume renddrirggcombi-
nation of color and transparency is still dominated by standard alphaasiting us-
ing the Porter-Duff over operator which can result in false colors witteiéng impact
on the visualization. Other more advanced methods have also beersedojoit the
problem is still far from being solved. Here we present an alternativeetgetiexisting
methods speci cally devised to avoid false colors and preserve vigphdrdering.
Our approach is data driven and follows the recently formulated knagledsisted
visualization (KAV) paradigm. Preference data, that have been gatlemeb-based
user surveys, are used to train a support-vector machine modeltfimatically pre-
dicting an optimized hue-preserving blending. We have applied the resoitig! to
both volume rendering and a speci ¢ information visualization techniquestititive
parallel coordinate plots. Comparative renderings show a signi capitasement over
previous approaches in the sense that false colors are completelyeiaued impor-
tant properties such as depth ordering and blending vividness aregretierved. Due
to the generality of the de ned data-driven blending operator, it carabiyantegrated
also into other visualization frameworks.

1 Introduction

Color mapping and transparency are both frequently used in visualizafiorolor
can be described by the values for luminance, hue and saturation. Wilealoce
is mainly responsible for detection of shape and state of movertiprihé sensitivity
to the chromatic part of a color stimulus, i.e., hue and saturation, allowshs! to
visually distinguish objects that are otherwise identical. Hence, color mgyipin as-
signing a hue value to scalar data, is most often used for visual groapthigbeling of
nominal data. In applications like illustrative parallel coordina®sahd volume ren-
dering, color mapping is combined with transparency in order to avoidisions. The
most popular method for simulating transparency is the source-oeeatmp from the
collection of the Porter-Duff operator8][ which creates a new col@ as a weighted
sum of two input color#\ andB,

C=Aa+B (1 a);az2][01]

The over-operator is also referred to as alpha-compositing and illustreEégurel.

A drawback of alpha-compositing is the creation of false colors, i.e.htieeofC
is usually not one oA or B. This is problematic when hue is used to encode nominal
data. For example, blending between a vivid red and green results irhtyslags sat-
urated yellow. A hue-preserving color blending scheme would chGdsaving either
the hue ofA or B, but not necessarily the luminance and saturation valuésawid B.
In Figurel the hues are indicated by red line-segments. False colors can diminish the



value of a visualization by creating artifacts wh@rhas a hue that exists already in
the given color palette, but also when the hue is not present in the galetigp False
colors with a valid interpretation in the de ned color palette can lead to misire&pr
tions, e.g., as a material property of a certain type rather than the pperpof two
different materials. False colors whose hues are not present invitie gilor palette
may introduce visual clutter.

The goal of this work is to build a hue-preserving color blending operétat,
while eliminating false colors, perceptually preserves important informgtiesent in
layered data, in particular depth information. Also, the blending resulildhme per-
ceptually close to the result from alpha-compositing in terms of vividnelssvever,
the goals of hue-preservation and perceptual closeness to the fethdtRorter-Duff
source-over operator are con icting. Hue-preservation can byitien be achieved by
using colors close to, or exactly on the gray axis as the blending resylbyi.desatu-
ration. But as colors get more and more desaturated, the perceptioe @fformation
is also diminished, and vanishes entirely on the neutral gray axis. Thprserving
color blending problem deals with the trade-off between the two goals. rRege
proaches4, 5] tackle the problem with an a-priori solution, but have not yet found
the optimal balance between the two objectives. Therefore, we pre@pdat driven
approach, that strives for capturing important color aspects wortfaipig, while
preserving the hue of the input colors. The proposed solution is aigextaption of
the standard Porter-Duff source-over operator, and therefgseteantegrate into any
visualization application that uses alpha-blending, but requires huerpati®n.

This paper is organized as follows. In the next section we discuss theétite-art
in hue-preserving color blending and work related to our data driveroagh, espe-
cially the knowledge-assisted visualization paradigm. In Se@iare brie y review
the basics of color theory and also support vector machines, a maeainag tool that
we have used for data analysis. In Sectbwe state the problem of hue-preserving
color blending formally and describe the data driven approach andshelnterface
that we have used to collect data from users. In Se&ior provide some information
on how we have collected data for generating an actual blending operamanalysis
of the data is then described in Sect®ri.e., it is described how to compute a blend-
ing operator from the data. We have applied the resulting blending opénaten
applications, illustrative parallel coordinates and volume rendering. &uplications
are described in Sectioh We conclude the paper with a discussion of our results in
Section8 and some concluding remarks in Sectfbn

Figure 1. Alpha-compositing. Two colois andB create a false coldC in a slice of the
HSV representation of theRGBcolor space of equal luminance (color circle). The hue
denotes an angle in the color circle.



Figure 2: Operator comparison. Shown are the Porter-Dufifceover operator (left, lin-
ear RGB), the blending operators by Wang et al. (middle, sR&® Chuang et al. (right,
linear RGB). On top are shown three semitransparent squarédack background ren-
dered with the respective method, while the images at thematlustrate each technique
for blending colorsA andB to create coloC.

2 Related work

Wang et al. #]] explain the problem of false colors in the context of constructing a color
palette for illustrative visualization. They point out that the problem of fatders can
be circumvented by blending opposing colors on a color wheel. If it ispogsible
to choose the colors that have to be blended opposite of each other @or avheel,
then they suggest to reduce the saturation component of either theofrtimé back
color, depending on which layer contains more important informationa second
implementation, the color is only changed within the region of overlap (sagd=2).
Wang et al. show the effectiveness of their approach on applicationsdical volume
rendering and illustrative parallel coordinates. However, false cdlave not been
eliminated entirely in these applications, since eventually the algorithm is stijlicgrr
out standard alpha-blending. Another drawback of the approach tipénameters
have to be optimized by hand, which is a complex task even for a moderatben
of transparent layers. Moreover, the perceived ordering of therdalgas not been
preserved in all cases. This can be mitigated though by manually tuningéuoéyof
the layers and the lightness of the colors.

In follow-up work Chuang et al.§] have developed a generic blending operator
that is also based on the opposing-color scheme, in order to eliminatectitss.
Their parameter free algorithm automatically determines the less domilanté the
two colors that have to be blended, and rotates it such that it gets theiteppos
of the more dominant color, while preserving saturation and adapting égbtnThe
subsequent linear interpolation results in a color with one of the origina (mee
Figure2). While perfectly preserving the hues of the given color palette, this rdetho
often produces blending results near the gray axis, which is a problgmotiolabeling
the layers and determining their depth order.

Urness et al.§] have introduced an alternative to the standard Porter-Duff blend-
ing operators for conveying transparency. Their approach preséhne original color
palette by displaying the colors of overlapping layers side-by-side insteadxing
them. The color of a pixel is chosen from the colors of the layers caye¢he pixel,
while the choice follows aveaving pattern A user study by Hagh-Shenas et ai] [
shows that observers can grasp multivariate information better whenweaving is
used instead of standard color blending. But the performance gaiaades with an
increasing number of overlapping layers. A drawback of the methodtssthfar the
weaving pattern has to be selected manually. Recently, the weaving teelmaisibeen
extended to scatter plots by Luboschik et &]. [



Blending overlapping colored, semi-transparent layers is usually omiyar part
of a visualization system. Hence, a solution to hue preserving color blgstiould
not introduce many or any additional parameters. ldeally, paramakees for a par-
ticular rendering method and dataset are determined automatically. Aveblate-
cent approach to avoid tedious parameter tuning is the knowledge-dsgstaliza-
tion (KAV) paradigm. Chen et al.9] propose a transition from interactive visual-
ization and information-assisted visualization to knowledge-assisted viatiatizhat
decreases the effort to explore the visualization parameter spadardidly. They
envision a framework where domain expert knowledge is centrallygtorbe shared
in the visualization community. In addition, automated reasoning is propssadvay
to synthesize knowledge by observing visualization processes, ahdrgppemantic
computing and machine learning techniques to implement case-basedirea Vi-
sualization techniques that incorporate the knowledge-assisted visualipatiadigm
include [10, 11, 12].

3 Background

3.1 Color space theory

A single electromagnetic color stimulus can be quanti ed as a vector in satoe c
space. One of the most frequently used color spaces in digital imagessing is
the sRGBcolor space 13] that de nes every color as a convex combination of three
pre-de ned primary color ; G, andB . The set of all convex-combinations

rR+gG+bB r+g+b=1rgb 0

is called the inducedolor gamutand contains all color stimuli representable for a par-
ticular choice of primaries. A color from the color gamut can be remteskby its
coordinate vectajr; g;b]". ThesRGBcoordinatessrggof this point are in general not
[r;o; b]T, but still convex coordinates that are obtained after a non-linear tianafion
called gamma-correction. In 1931, the CIE (International Commissidliumnination)
proposed th&XYZ color space, based on psycho-visual experiments, with a set of pri-
maries, such that the color gamut contains all colors that can be petidsi the human
visual system.

More intuitive representations of colors are given by their cylindricalrdmates
induced by a transformation frosRGBinto HSLor HSV color space, respectively. The
transformation aligns the grey axis within tR&B-cube either with thé (lightness) or
theV (value) axis, to represent the achromatic part of a color stimulus indiepdy.

The hue H) stands for an angle in the plane perpendicular to the grey axis, thus spec
fying a color circle for every particuldr or V value, respectively. The exact de nition
of saturation §) differs betweerHSVandHSL (see [L4]).

The Euclidean distance in both ts®GBand XYZ space is an insuf cient means
to determine color similarities, since these spaces are not inherently eguoidis-
cording to the color distance function of the human visual system. Tdrerethe
CIE proposed the perceptual color sp&i&Labin 1976, that transformXYZ coor-
dinates non-linearly to account for non-linearities in the visual respohee human
visual system. Hence, color distand&sgiven as the Euclidean distance between two
CIELabvectors conform better with the perceived distances. This convergiamam-
eterized by a reference white pointXYZ coordinates, wherB50 andD65 are most
frequently used in practice. AnalogouslyHi&V for SRGB CIELChstands for the rep-
resentation of the&ClELab space in the cylindrical coordinates lightness, chroma and
hue. Subsequent improvements on color distance measures inclubke, treed Dg,,
color distance metrics, that introduce more complex distance formulasnpensate
for errors in theDg metric.

3.2 Support Vector machines

Support Vector Machines (SVMs) are a popular family of machine lagrechniques
for supervised classi cation (and regression) problems. GivertamatrixX 2 R™ N,



i.e., m data pointsx in dimensionn, together with a vector of label 2 L™, where
thei'th entry in' Y corresponds to the sample in tf row in X, the task is to learn
a predictor that associates to every poinRfha label from the label spade. If L is
a nite set, then the learning problem is called a classi cation problem, ahdHfR,
then it is called a regression problem. The special case Wwheantains only two
elements is called a binary classi cation problem.

Support vector machines are based on sound principles (see thé&p&b&inwart
and Christmann1[5]) and are phrased as optimization problems. A binary classi er,
i.e., the case where = f 1;1g, can be computed from the solution of the convex
quadratic program

1, g
min=kwk“+ C g X
wb 2 i=1
sty(w'xi+hb) 1 x;x O

as the following function
R"3 x 7! signw' x+ b): (1)

Extensions from binary classi cation to multi-class classi cation and regi@ are
well known [16]. Support vector machines and similarly also support vector reigress
basically compute optimized hyperplanes as predictors or regressgpgctively. But
they can be turned non-linear by applying the so called kernel trick ¢sex&mple the
book by Schilkopf and Smola16]). The kernel trick replaces the standard Euclidean
scalar product by a positive kernel. Important positive kernels a&tussian kernel

K;x)) = exp g x X 2 withg> 0;

and inhomogenous polynomial kern&(s;; ;) = ( xiij +0% c> 0.

4 The data driven approach

State of the art techniques for hue-preserving color blending, asssisgun Sectiog,
take a hypothesis based approach. In contrast to that we follow a deta-dpproach
inspired by the principles of knowledge-assisted visualization (KA}/)Pne can think
of a data-driven approach as a KAV-based solution, where knowléalgput optimal
parameter values for a particular visualization technique) is gathered ityplather
than explicitly. That is, we do not aim for explicit (externalized) domainezkgnowl-
edge, but elicit data from users on examples of blending problems aldmmeans
that we pursue an active data collection strategy, i.e., we do not col¢athy pas-
sively observing users while working with visualizations that involve colending,
but ask them actively about their preferences by using speci calligded interfaces
to collect the data.

4.1 Problem speci cation

Before describing how we have collected data implicitly comprising the dokmaiwl-
edge and preferences for hue-preserving color blending, wewastt to specify the
question that has to be answered from the data.

Generally, rendering a scene with multiple colored semi-transparemnslaggults in
pixels that represent several layers and the question is how to integeatédimation
from the different layers at a given pixel. Hadwiger et 4l7][point out that when
looking at a real scene, color information is accumulated iteratively exygshysical
layer before it reaches the observer's eye. Hence, also forniegdbe case of multiple
layers can be reduced to an iterative sequence of two-layer problérissstill leaves
two options: the information can be accumulated either from the front toettielayer,
or the other way around. The two options lead to two compositing schemes:



c=cf af+(1 ag) ¢ 2
c=cf af+cp (1 af) ap, as:=as+(1 as) ap 3

, where Equatior2 states the back-to-front and Equati®the front-to-back composit-
ing scheme. Where;, as andcy, ap are the colors and alpha-values of the front- and
the back layer, respectively. Both compositing schemes are technigailyaéent and

in general not hue preserving. Hue-preserving color blendingsseekd ¢&; close to

¢ whose hueHlfl value) is among or close to one of the hues of the different layers.
Hence, the problem becomes to nd a hue-preserving mapping

[criopag]  or  [cticpiafsap] 7Y G

Since any additional dimension of the problem space increases theathtaigg effort
in a data driven approach, we specify every problem instance by aely garameters,
i.e., by a vectofct;cy; asl-

4.2 Solution space exploration

In principle, there are at least two data driven strategies for solvingrtiizgm of false
colors, i.e., to de ne or compute a mappif@;cy; as] 7! &, namely:

1. Transforming the input vectdcs; cy; at] into some vectof€s; €a; a¢] based on
user data and applying the standard blending forAttethe transformed vector.
This approach is similar to the one taken Wang et al. and Chuang et al. (see
Section2).

2. Inferring the coloc; directly from the user data without the additional evaluation
of a blending formula.

We have pursued both strategies and want to refer to the rst strateByoagem
Transformationand to the second strategy B#rect Solution In the following we
describe how we have implemented the two strategies and why the secated)str
works better for us.

4.2.1 Problem transformation

We have designed an interface (see FigBydor data gathering that gives the user
full control over the solution spadés;y; &¢]. Here the solution space coincides with
the problem space since we want to transform a given problem instaraotber
problem instance to which the standard blending formula is then appliednfEnface
has controls to manipulate the valué) @nd the saturatiorH) in the HSV space for
both input colorscs andc,, and one control for modifying the alpha valag (since
ap can be assumed to be 1 in back-to-front compositing). Hence, theaicgelfas

Figure 3: A prototype interface. This version was not usedte nal data collection.



ve controls in total. Through the controls the user can transform thengpreblem
instance, namely two overlapping disks with colagsand ¢y, respectively, that are
presented on top in the middle of the interface. The color in the overlap divbe
disks in the problem instance is obtained from applying the standard blefaaimgla

for [cs; cp; af]- The second pair of overlapping disks at the bottom in the middle of the
interface shows the same disks, but now the color in the overlap regiomisuted by

the standard formula for the transformed instaf@geCa; &¢] as speci ed by the user.
The task for the user is to modify the original problem instance such thaivibrdap
region for the lower pair of disks does not show a false color and streptually
close in terms of depth ordering and vividness to the original blendingmn to

It turned out that the ve-dimensional solution space is too large to beexplbred
even for users that are familiar with the topic of false colors or color sei@mgeneral.
Also, the impact of each parameter on the nal blending is oftentimes leat since
the impact is only indirect through the evaluation of the blending equatioe. hidh
cognitive workload on the user results also in a long time to acquire just ke slata
point.

A possible way to reduce the search space is to reduce the number ofsthms
e.g., by xing of the transparency chanre}, or to subsample each dimension. Sub-
sampling can turn the continuous solution space nite, and the problem sbthéon
space becomes a nite choice problem, i.e., picking the best solution &onite
choice set. The interface to choose from such a choice set can be sthplith tech-
nigues that we describe in Sectidr2.2 but it would still be more complex to be used
effectively than the solution that we describe next.

4.2.2 Direct solution

For the direct solution we also use a nite choice approach, but now witévaluat-
ing the blending equation. Thus the choice set, i.e., a nite set of cajofer each
problem instancfcs; cy; af], has been constructed differently than in Seciéhl To

construct the choice set we exploit the fact that only a “small” subspatee color
space quali es as possible answer, namely the set of colors with eitkesfdhe hues
of ¢t or ¢y. In color spaces with cylindrical coordinates, liIGELCHh all colors with

the same hue lie on a plane spanned by the lightness and chromaticity axes.

Figure 4: Final user-interface. This version was used tecothe preference data.

We have designed an interface (see Fighrthat allows to explore the choice set
with lower cognitive effort than required for the problem transformagipproach. As
before, the overlapping disc pair at the top provides a reference téaheasd alpha-
compositing blending result. The lower disc pair renders the blending aoltire
overlap region computed directly from the user's selection. Thergfloeenterface has



now only one control that allows to browse along the choice set in a linshidfa,
in order to keep the cognitive workload of the 2D exploration as low asifgesg~or
that, the colors in the choice set have been ordered linearly, such that twat are
close with respect to the linear order are also perceptually close (usiimg thetric).
We have determined that this allows the user to narrow the potential bésestimm
the choice set down quickly, by ruling out candidates that lie far fromniatiecan-
didates. Hereby, the challenge is to order a sampling of a two-dimensiohapace
of the color space linearly. We have addressed this by sampling the twensliomal
subspace along a continuous space lling curve, more speci cally a Hitheve [L8]

(see Figures).

Figure 5: Locality preserving linear ordering of samplesnira hue plane (here green).
Shown at the top are the samples and their ordering alongce sftiag curve from the
lower-left to the upper-right corner. Shown on bottom is tlsulting order of the colors
laid out in rows from top to bottom.

Besides locality preserving exploration of the two-dimensional sampleesgang
a path, the interface allows for directly jumping to distant colors. This spatly
includes user marked colors, that were considered as potentialfmesés during the
exploration, in order to get back to them quickly at any time, if necessary.

5 Data collection

We have collected data points of the forrfts;cy;as];& over the Web using the
interface shown in Figuré. The data points will be used later to learn a good mapping
[ctiepas] 7! G

In the following we rst describe a strategy that we have employed tocedhe
number of necessary data points, before we discuss their collectionasAlseen dis-
cussed already by Wang et &],[colors that lie on opposite sides of the color circle do
not result in false colors when they are blended together, becausedteiéraxes co-
incide on a common line that intersects with the gray axis. Although exacisiam
is rarely the case because of rounding errors or a random sampkrigetnof Wang et
al. can still be used to reduce the number of sample points, i.e., probétamaes. The
idea is, that if the line segment that connects two colors in a color circle &t to
be blended intersects a small disk centered at the center of the color(eihitd lies
on the gray axis), then the hue of the result of alpha-blending the twoscodmmot be
distinguished perceptually from one of the two original hues (see F&)ure

Of course the radiue of the disk needs to be small enough to guarantee this prop-
erty, that represents a continuous extension to the discrete evaluatioa @bpbsite
color predicate. We chose the radiisuch that the colors in the disk seem achromatic
to the human visual system. The intuition behind this approach is that alkdoltine
truncated cone whose apexdsind whose opening angle is determined by the disk with
radiuse (see again Figuré) can be considered perceptually opposit€td he cone is
truncated at the line that is passing through the center of the color circlie antiog-
onal to the line segment fro@ to Copp, WhereCopp is an actual opposing color @f.
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Figure 6: A cross-section dZIELab space orthogonal to the lightness axis. The disk at
the center with radius de nes a color region that appears achromatic to the humsurali
system.

The truncated cone is shown in orange in Fighrend the analogous truncated cone for
Copp is shown in yellow. The tolerance disk with radiasllows to de ne predicates
that given two colors, determines their relationship in terms of percepppdsition
andequivalent hue-anglanith these predicates it can be decided if the blending result
¢ of a problem instancfes;cy; afs] can be computed by alpha-compositing (without
creating precptually false colors), or has to be inferred from the colledd¢a. The
decision rules are as follows:

- If a; is either 0 or 1, then the blending result is eithgior c¢, respectively, and
thus can be set directly

- If ¢; andcy, are opposing colors; this can be decided by checking if the line-
segment connecting the two colors intersects the tolerance disk with eadius

- If the colorscs andc, have the same hue; this can be decided by cre@ipg
for ¢t (see once more Figu, and performing the color opposition test @jpp
andcy.

Note, that if one of the colors; or ¢, is perceptually achromatic, then the opposite-
color-check will always evaluate positive, and thus the blending carobwpeted di-
rectly. Blending with an achromatic color does not create any false ¢ohws adding
achromatic colors to the survey samples does not increase the complettiey sur-
vey, however, this stabilizes the learned model along the lightness axis, wésdid
not exploit the symmetry betweéex ; cp; a¢] andcy;cs;1  as] in the standard alpha-
compositing setting, because it is not obvious, why such a symmetrydshold for
hue-preserving color blending.

It remains to describe how we have determined the ragliofsthe tolerance disk.
For that we have conducted another web based survey. We havied@ipl. Chspace
close to the gray axis at six equidistant hue angles, and along eachdiaéresteps of
4 chromaticity units from 4 to 20, and at six equidistant lightness levels freonl00
units on theCIELChlightness scale. Each of these 180 sample points was presented
to participants in our survey together with sample points with similar lightnesgwvalu
that have been sampled exactly from the gray axis. The participants fdahtdy the
unique chromatic sample point among 16 sample points that were preserterid
of 4 4 colored patches. The radief the tolerance disk has then been chosen such
that the disk does not contain any sample point that has been identi esctgras the
chromatic one in at least 80% of the answers for that sample point.

The data for this survey have been collected over the course of twe\ireek more
than 120 participants who contributed a total of 2457 answers, i.e.t @Balecisions
per participant and 14 answers per sample point.

We observed that the chromaticity-sensitivity that has been probed iruthisysis
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hue-angle independent but depends on lightness value. Resulting f@aiuke radius
eare listed in Tabld.

Table 1: e-Radius for the Tolerance Disk, depending on the lightnedgevin CIELCh
space.

lightness level| chroma tolerance
<20 15.0
20to 80 10.0
> 80 20.0

Finally, we are ready to describe how we have sampled data points frdomitteon
[ct;cn;af] 7! €. The problem instancds; cy; @] have to be represented in a speci ¢
color space. Since the data have been collected over the Web we casaoteathat
the monitors of the participants of our survey support a color gamutshatger than
the sRGBcolor space. Hence, the sample points have been sampled randomly fro
sRGBspace such that any point #RGBhas a sample point at distance at mosDg0
. This results in 16RGBsamples (including ve equidistant achromatic colors added
afterwards). Together with a sampling of the alpha-chaaneh increments of 0.25,
this resulted in a total of 1280 sampled problem instances. Out of thedeati2® be
evaluated by participants of our Web based survey using the interfaweRigure4.
The remaining instances can be blended automatically. For each of thedratic
sRGBsamples, we sampled the corresponding hue-plar@ i Ch space such that
any point has a sample point at distance at mosbd5leading to an average of 50
alternative colorg;"on the interface slider.

Over the course of 4 weeks, we have collected 1851 choices fromak88ipants,
most of them students and people with an academic background, havetvescessar-
ily color science experts. Initially, every participant had to answer to at Béachoices,
however later we reduced this to 10 choices, in order to reduce the segnitrkload
on the participants and to obtain answers of high quality in at most 20 mintUtess.
participants did not evaluate any problem instance twice. On averadeottd®e 129
problem instances was presented to 14 participants.

6 Data Analysis
The goal of the data analysis is to learn a function
R’ 3 [ct:cpas] 7! & 2 R®

from the user feedback that has been gathered via the Web using tifiedatsown in
Figure4. The perceptual non-uniformity & RGBcan cause non-linear dependencies
between the input vector and the gathered label. To circumvent this prabé&ecolor
coordinates of the input colocs andcy, have been transformed frosRGBto CIELab
coordinates, i.e any problem instance can be represented as

[Lt;as;bs; Ly ap; by at]

using theClELabcoordinated ;a andb. At a rst glance the learning problem at hand
looks like three regression problems, namely one regression problega¢h coordi-
nate ofc; (lightness, chroma and hue). However, the hue;dé by de nition either
the hue ofct or ¢, and thus can be determined by a binary classi cation. Predicting
the hue angle of the blending color by regression can produce falses cel@n if the
prediction is only a little bit off. Thus, binary classi cation is both more ef oteto
evaluate and more reliable in the sense of hue preservation.

As mentioned before, we had 1280 problem instances in total wherebéepro
instance now is given as point in seven dimensional Euclidean $pacd@he num-
ber of data points that we enter into the support machine or regressicnmagy is

11



higher though, because the same problem instance has been evajuats@ial par-
ticipants in the survey. We handle this as follows: we add one constraint supert
vector/regression optimization problem (see Sec8d) for every problem instance
and chosen alternative@ and weigh the slack variablesfor thei'th constraint by the
number of timesw; that participants have chosen the particular alternativee’, the
objective function of the support vector machine is modi ed as follows,

1, J
min=kwk“+C g w; X
wb 2 i=1
Luckily, the modi ed support vector machine/regression instancesstiifbe solved
using the popular, publicly available LIBSVM solverd]. We used this solver together
with polynomial and Gaussian kernels. Parameters like the regularizatiampteC
in the objective function of the support vector machine and kernel fiypeameters
have been set using cross-validation which is supported by LIBSVMirited out
by using cross-validation that in our case the solutions of the kernelizadination
problems outperform their linear counterparts, and the polynomiakkstightly out-
performs the Gaussian kernel.

Finally, the solutions to the two regression and one classi cation problems pr
vide us with the mapping from problem instangeg cy; af] to a blending colorc;,"=
[I:r;(fr; F\r]. Pixel-wise evaluation of the three functions is computationally expensive.
The SVM based blending operator on our dataset is about 20 times esséxp as
alpha-compositing. Therefore, we used solution pools to avoid evaluatingroblem
instance twice. This has been suf cient for our applications where thgesaave
been rendered off-line. Note though, that by construction the evaluatitre three
functions is easily parallelizable. Hence, we recommend a GPU basetibfuevalu-
ation for achieving real-time, interactive frame rates, especially in voleméering.

7 Applications

We have integrated our data driven blending operator in an illustratiaiglacoor-

dinates framework, and have also used it for volume rendering. tim dggplications
we have blended two layers at a time in back-to-front order, wherelislgmesults are
always fed into the next blending iteration as the back layer. But beferdigcuss
both applications in more detail, we will rst discuss the performance ofadending

operator in a synthetic test case.

7.1 Synthetic test case

Figure7 compares the blending operators de ned by Wang et al., Chuang endl.
our approach on a synthetic test case with three semi-transparenésauea black
background. A rendering using alpha-compositing is also shown fererece. The
test case is probably the most dif cult color setupsiRGBcolor space since the hues
of the three layers are the three primariessBiGBand thus cover all hues (angles)
when blended using alpha-compositing.

The rendering produced by the method of Chuang et al. creates hilistihguish-
able shades of gray in the overlap regions, making it dif cult to deterraimg depth
order. The method by Wang et al. performs much better in this respmegMer, there
not all false colors have been eliminated entirely.

Our blending resultis hue-preserving by construction. Howeverdardp produce
a consistent rendering, the classi er needs to be reliable on all the pwed#ons. For
example, it would be of little value if the blue hue would be predicted to lay owerati
hue on the right, but below it in the central overlap region. But as carbbereed this
consistency property is satis ed in this test case. Also,the goal of piegethe depth-
ordering has been achieved. Note that we have enforced this goabastaaint during
the Web based data collection, and this constraint carries over to thersupptor
models. Another notable difference to the other methods is that the lighbhdiss
lower layers is higher. This has not been enforced as a constraint dratheollection
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Figure 7: Synthetic test case: (On top) defaRGBblending of three colored squares
against a black background creating false colors; (At théobofrom left to right) same
physical layout rendered using the blending operators elé by Chuang et al., by Wang
et al., and our data driven blending operator.

phase, but surprisingly for us it supports the perception of the shape anderlying
layers nicely, without sacri cing the perception of the correct deptrednd).

7.2 lllustrative parallel coordinates

Figure 8 to 10 show results that have been obtained after integrating the data driven
blending operator into the rendering software for illustrative paralletdioates (IPC)
by McDonnell et al. 2].

g 4 24128

Figure 8: A two-layer IPC with a blue layer on top and red laiyethe background: (top)
blending using alpha-compositing; (bottom) blending gghme data-driven blending oper-
ator.

Depth order preservation is crucial for the performance of IPCsamiding false
colors is also very important. IPCs can suffer from optical illusions wiaése colors
are created, i.e., areas of overlap with false colors can appeavastegories that are
not present in the data (geometric artefacts). Hue-preserving btghdips to reduce
the perception of geometric artefacts. This is probably most notable in i fdyer
rendering in Figurd 0.
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Figure 9: A two-layer IPC with a green layer on top and red tapethe background:
(top) blending using alpha-compositing; (bottom) blemdirsing the data-driven blending
operator.

Figure 10: A three-layer IPC with a blue layer on top, a re@fag the middle, and a green
layer in the background: (top) blending using alpha-coritpag (bottom) blending using
the data-driven blending operator.

Figure 11: Simulated dataset, that shows three ellips@dsafly including each other: (On
the left) blending using alpha-compositing; (On the righignding using the data-driven
blending operator.
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Figure 12: Neghip dataset: (On the left) blending using alpbmpositing; (On the right)
blending using the data-driven blending operator.

Figure 13: Fuel dataset: (On the left) blending using alpb@positing; (On the right)
blending using the data-driven blending operator.

7.3 Volume visualization

Finally, we have also integrated our blending operator into a volume rieigdeame-
work, and applied it to a simulated geometry, and the well known fuel agtip data

sets (see Figureklto 13). Also in volume rendering hue-preservation turns out to be
bene cial in terms of depth perception and color vividness. But thetrimportant
observation here is that the data-driven model is able to pertain continuity all the
CIELChaxes on a large number of layers, in addition to the large variation in lightness
between adjacent pixels which results from the lighting model that is engbloy¢he
volume renderer.

8 Discussion

8.1 Towards the goal

The main goal that we have stated in the introduction is a hue- and depthpoede
serving blending operator that is perceptually close to the standard Puffeover-
operator, e.g., in terms of vividness. The renderings producediblglending operator
in all the evaluated applications show that we have come closer to ourygeafdrcing
the preservation of the chosen color palette as a constraint in our WedysThese
renderings allow a better understanding of the data, because they ag@defacts
that can be introduced by default alpha-compositing. Although the @mistr(hue
and depth-order preservation) can be con icting (see Se@jpaur results show, es-
pecially in the case of illustrative parallel coordinate plots, that a datardrivedel
can nd a good balance between them. Also, the restriction to only a smalbeu
of layers as for the weaving approach (see the evaluatior]jripes not apply to the
data-driven operator as can be seen in the volume rendering examples
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8.2 Data collection
8.2.1 Study design

To design the web survey as a choice task proved to be an effectivedrtetbollect the
required amount of data for developing a reliable blending operatoroidth a single
paired comparison test comes with the least cognitive burden for thesesep0), it

would not have been practical for us to capture a single sample of thaiggiunction

R’3[ci;cpas] 7! & 2 R3

in this way. In a paired comparison study, before any ranking informdto the ¢;
can be retrieved (e.g. by Thurstone's Law of Comparative Judgef2d]), a fre-
quency maitrixsj, where each entry represents the number of times eleinhaistbeen
preferred over elemernt would have to be lled, and thereforén 1)=2 comparisons
would have to be made by every single participant in order to retrieve éferpedcy
amongn alternatives. To reach statistical signi cance, a rule of thumb suggektast
15 data points per free parameter, i.e., in this casellary choices for a problem
instance which in turn only provides a single function sample. Hence, theéreel
number of comparisons would either be infeasibly large or the numhehate alter-
nativesc; would have to be very small. Our choice-based evaluation supported by a
linear alignment of the possible choices allows for a more effective tesedure.

8.2.2 Study participants

Another important factor are the participants that take part in the sudsyally, dig-
ital user studies/surveys are conducted in one of two ways: in a comptetetsolled
lab environment, or over the Internet. Because of relatively high timenaouktary
costs of lab-based user studies, Web-based user studies haveshiecmasingly pop-
ular. The main advantage of a Web-based user study is the large nahpaeticipants
that can be recruited in relatively short time. Garg et 22] tonducted two different
online studies, where they collected responses from 96 users in justagne num-
ber that is dif cult to achieve in a lab-based study. However, without s@ort of
mediator, an online-study has several drawbacks. A small numhszagfie can con-
tribute a larger number of votes, and thus skew the results, without dtdevay to
detect this. Incentives to motivate the participants to deliver high qualitytsesre
also more complicated to be distributed. Amazon provides a service to Ip#e
of a mediator between test requesters and workers, namely Amazamaiieal Turk
(AMT). An insightful discussion about AMT for perceptual studies igegi by Kosara
and Ziemkiewicz 23]. Another ef cient data collection method for color blending us-
ing gami cation was presented by Ahmed et &4]. Our study for data-driven color
blending aims at sampling an unknown function hidden in the human vigatdrms.
Therefore, the ground truth is not known, which would be necessaeyatuate the
quality of a user's response in order to use the incentive and penatsnsys AMT.
That is why we decided to conduct a manually developed online-survey.

9 Conclusion

We have shown how to construct a data-driven blending operatordpaires the hu-
man domain knowledge by means of support vector machine modela badk-to-
front compositing scheme. Hereby, the Web-survey design was teearitical part,
as it directly dictates the quality of the collected data. Main challenges wheyndes
the survey was keeping the cognitive burden on the participants low,lbasaptimiz-
ing participation in the survey. A careful selection of search-spacgtienh criteria and
an intuitive survey-interface allowed the collection of enough data ofcseriit qual-
ity. Still, the nal blending operator would pro t from an even larger anmbwf data
on which the support vector machines can be trained. Equipped withuadjtouth
provided by our data, online-survey mediator services, like Amazochit@cal Turk,
could leverage this strategy and provide a larger data base. But alfeatyending
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operator that has been learned from the data that we have collectegsdtams well
in applications. We have applied the data-driven blending operator ssfadg to 2D
data sets with few semi-transparent layers (illustrative parallel codegdipas well as
to 3D data sets (volume rendering). In both applications we have beetoabiprove
signi cantly over default alpha-compositing and also over state-ofattte¢echniques
for hue-preserving color blending. Avoiding desaturated blendinglteeand enforc-
ing the preservation of the perceived depth-order already in the dé¢atamn phase,
resulted in a blending operator that keeps these qualities next to beimydserving.

Finally, we have developed a software library that can be integrated iptaisual-
ization application that requires a hue-preserving blending operatdar 8ar solution
is limited to of ine-rendering applications, because of the computationalpersive
per pixel evaluation. However, with GPU-based classi ers and regrssinteractive
frame rates should be possible.
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