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(a) Holomorphic 1-form (b) Conformal virtual colon flattening

Figure 1: Conformal Virtual Colon Flattening: (a) illustrates the holomorphic one-form on the colon surface by texture-mapping a checker
board image. (b) exhibits the conformal flattening induced by (a).

Abstract

We present an efficient colon flattening algorithm using conformal
structure, which is angle-preserving and minimizes the global dis-
tortion. Moreover, our algorithm is general which can handle high
genus surfaces. First, the colon wall is segmented and extracted
from the CT dataset. The topology noise (i.e., minute handle) is lo-
cated and removed automatically. The holomorphic 1-form, apair
of orthogonal vector fields, is then computed on the 3D colon sur-
face mesh using the conjugate gradient method. The colon surface
is cut along a vertical trajectory traced using the holomorphic 1-
form. Consequently, the 3D colon surface is conformal mapped
to a 2D rectangle. The flattened 2D mesh is then rendered using
a direct volume rendering method accelerated with the GPU. Our
algorithm is tested with a number of CT datasets of real patholog-
ical cases, and gives consistent results. We demonstrated that the
shape of the polyps is well preserved on the flattened colon images,
which provides an efficient way to enhance the navigation of avir-
tual colonoscopy system.

Keywords: Conformal Mapping, Direct Volume Rendering, Vir-
tual Colonoscopy

1 Introduction

Virtual colonoscopy uses computed tomographic (CT) imagesof
patient’s abdomen and a virtual fly-through visualization system
[Hong et al. 1997] that allows the physician to navigate within a 3D
model of the colon searching for polyps, the precursors of cancer.
Virtual colonoscopy has been successfully demonstrated tobe more
convenient and efficient than the real optical colonoscopy.How-
ever, because of the length of the colon, inspecting the entire colon
wall is time consuming, and prone to errors. Moreover, polyps be-
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hind folds may be hidden, which results in incomplete examina-
tions.

Virtual dissection is an efficient visualization techniquefor polyp
detection, in which the entire inner surface of the colon is displayed
as a single 2D image. The straightforward method [Balogh et al.
2002; Wang and Vannier 1995] starts with uniformly resampling
the colonic central path. At each sampling point, a cross section
orthogonal to the path is computed. The central path is straight-
ened and the cross sections are unfolded and remapped into a new
3D volume. The isosurface is then extracted and rendered. Inthis
method, nearby cross sections may overlap at high curvaturere-
gions. As a consequence, a polyp might appear twice or be missed
completely in the flattened image. Balogh et al. [2002] use anitera-
tive method to correct cross sections, using two consecutive ones at
a time. Wang et al. [1998; 1999] use electrical field lines generated
by a local charged path to generate curved cross sections instead
of planar sections. If the complete path is charged, then thecross
sections tend to diverge, avoiding overlaps. However, due to the
expansive computation of the global charge, the authors only lo-
cally charge the path, which cannot guarantee that the curved cross
sections do not intersect each other any more.

Paik et al. [2000] have used cartographic projections to project
the whole solid angle of the camera. This approach samples the
solid angle of the camera, and maps it onto a cylinder which is
mapped finally to the image. However, this method causes distor-
tions in shape. Bartrolı́ et al. [2001b] have proposed a method to
move a camera along the central path of the colon. For each camera
position a small cylinder tangent to the path is defined. Raysstart-
ing at the cylinder axis and being orthogonal to the cylindersurface
are traced. The cylinder is then opened and mapped to a 2D im-
age. The result is a video where each frame shows the projection
of a small part of the inner surface of the colon onto the cylinder.
This avoids the appearance of double polyps since intersections can
only appear between different frames. However, this approach does
not provide a complete overview of the colon. They have presented



a new two step technique to deal with double appearance of the
polyps and nonuniform sampling problems [Bartrolı́ et al. 2001a].
First, curved rays are cast along the negative gradient of the distance
map from the central path of the colon, which return the distance
between the camera and the intersection points on the colon surface.
Then, the height field is unfolded and the nonlinear 2D scaling is
applied to achieve area preservation. However, it is important to
this method that the central path is smooth and has as many linear
segments as possible.

Haker et al. [2000] have proposed a method based on the dis-
cretization of the Laplace-Beltrami operator to flatten thecolon sur-
face onto the plane in a manner which preserves angles. The flat-
tened colon surface is colored according to its mean curvature. A
morphological method is used to remove minute handles resulting
from the segmentation algorithm, because their algorithm requires
the input surface to be a topologically open-ended cylinder. How-
ever, the color-coded mean curvature of the extracted surface is not
efficient for polyp identification, and it requires a highly accurate
and smooth surface mesh to achieve a good mean-curvature calcu-
lation. Furthermore, our method maps the colon surface to a planar
rectangle, while their method maps the colon surface to a planar
parallelogram.

We propose a novel method for colon flattening by computing
the conformal structure of the surface, represented as a setof holo-
morphic 1-form basis. It has the following advantages: 1)The al-
gorithm is rigorous and theoretically solid, which is basedon the
Riemann surface theory and differential geometry; 2)It is general,
so it can handle high genus surfaces; 3)The global distortion from
the colon surface to the parametric rectangle is minimized,which is
measured by harmonic energy; 4)It is angle preserving, so the shape
of the polyps is preserved; 5)The topology noise is removed auto-
matically by our shortest loop algorithm. Combined with thedirect
volume rendering method, the flattened 2D colon image provides
an efficient way to enhance virtual colonoscopy systems.

The remainder of this paper is organized as follows. The shortest
loop algorithm for topological denoising is presented in Section 2.
The algorithm to flatten the colon surface with conformal mapping
is discussed in Section 3. The direct volume rendering algorithm
for the flattened colon surface is described in Section 4. Theim-
plementation and experiment results are reported in Section 5. In
Section 6, concluding remarks are drawn, and future work of this
subject is summarized.

2 Topological Denoising

The colon surfaces reconstructed from CT dataset usually have
complicated topologies caused by the noise and inaccuracy of the
reconstruction methods. In general several spurious handles will
be introduced to a surface. This topological noise complicates our
flattening algorithm, and introduces large distortions.

It is challenging to locate these handles and remove them us-
ing special ”topology surgery”. El-sana and Varshney [1997] have
proposed a topology controlled simplification method for polygo-
nal models. Tiny tunnels are identified by rolling a sphere ofsmall
radius over the object. Guskov and Wood [2001] have presented a
local wave front traversal algorithm to discover the local topologies
of the mesh and identify features such as small tunnels. The mesh
is then cut and sealed along non-separating cuts, reducing the topo-
logical complexity of the mesh. These methods are efficient for tiny
handle identification. However, we find that handles are not tiny in
our colon data sets as shown in Figure 2. Our approach is different
in that it identifies handles by locating the shortest loop for each
homotopy class.

Figure 2: A zoomin view of a colon surface with two handles.

2.1 Handle Identification

Intuitively, the topology of a closed oriented surface is determined
by the number of handles (genus). Two closed curves arehomo-
topic if they can deform to each other on the surface. Homotopic
equivalence classes form the so-calledhomotopygroup, which has
finite generators, i.e.homology basis. Each handle corresponds to
two generators. A handle can be removed by cutting the handle
along one of its generators, and filling the resulting holes as shown
in Figure 3.
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Figure 3: Homology basis and topological surgery.

It is highly desirable to locate the shortest (or optimal) loop in
eachhomotopygroup [Éric Colin de Verdière and Lazarus 2005].
This requires the techniques ofcovering space. Suppose that̄M and
M are two surfaces, then(M̄,π) is said to be a covering space ofM
if π : M̄→M is a surjective continuous map with everyp∈M hav-
ing an open neighborhoodU such that every connected component
π−1(U) is mapped homeomorphically ontoU by π. If M̄ is sim-
ply connected, then it is said auniversal covering spaceof M. A
simply connected regioñM ⊂ M̄ is called afundamental domain,
if the restriction ofπ on M̃ is bijective. Intuitively, one can slice
M along some curve set (cut graph) to obtain a topological disk(a
fundamental domain), and glue fundamental domains coherently to
form the universal covering space.

For any pointp∈M, its preimages are the discrete setπ−1(p) =
{p̄0, p̄1, p̄2, p̄3 · · ·} ⊂ M̄. If γ̄k is a curve connecting ¯p0 andp̄k in the
universal covering spacēM, thenγk = π(γ̄k) is a closed loop onM.
By going through all end points ¯pk, γk goes through all homotopy
classes. In order to find the shortest loopγk in each homotopy class,
we can find the shortest path̄γk in the universal covering space in-
stead. Figure 4 demonstrates the concepts of fundamental domain
and universal covering space using a genus one surface. It illus-
trates the idea of lifting a loop to a path and converting the shortest
loop problem to the shortest path problem.
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Figure 4: Topology Concepts: Two curvesγ1,γ2 on a surfaceM form a cut graph. M is sliced open along the cut graph to become a
fundamental domaiñM, γi is mapped toγ+

i andγ−i . By gluing many copies of̃M such thatγ+
i is glued withγ−1

i , theuniversal covering space
M̄ can be obtained.π : M̄→M is the projection map. Any pointp on M has a discrete preimage setπ−1(p) = {p̄0, p̄1, p̄2, · · ·}. Any closed
curves throughp on M are lifted as curve segments connecting two points inπ−1(p), e.g. γ1 is lifted asγ̄1, γ2 is lifted asγ̄2. The shortest
loops onM correspond to the shortest path on̄M.

2.2 Denoising Algorithm

Given a closed meshM, we want to compute its cut graphΓ, its
homology basis, its fundamental domaiñM, and find the shortest
loop homotopic to the base loops. In the following discussion, we
assume the surfaces are represented by meshes using the halfedge
data structure. We usef to denote a face,e for a halfedge,e− for
the dual halfedge ofe, M for mesh,M̃ for the fundamental domain
of M, M̄ for the universal covering space ofM.

2.2.1 Computing Cut Graph and Homology Basis

The algorithm to compute thecut graphandhomology basisfor a
genusg surfaceM is as follows:

1. Arbitrarily select a seed facef1∈M, letM←M/ f1, andM̃←
f1. Suppose∂ f1 = e1e2e3, then∂M̃ = e1e2e3.

2. Suppose at current stage

∂M̃ = e1e2, · · · ,en

Choose a halfedgeek from the boundary ofM̃. Supposee−k is
associated with a facef ∈M, ∂ f = e−k τ1τ2, then gluef with
M̃ by identifyinge−k ∈ ∂ f andek ∈ ∂M̃ , let M̃← M̃∪ek f and
M←M/ f . Update the boundaries

∂M̃ = e1e2, · · · ,ek−1,τ1,τ2,ek+1, · · · ,en

3. Repeat step 2, untilM = /0. The faces are removed fromM
one by one, the first one is denoted asf1, the second one isf2
and so on.

4. ∂M̃ is a loop composed by a sequence of halfedges, then all
the edges whose halfedges are in∂M̃ form the cut graphΓ.

5. Compute a spanning treeT of graphΓ. Suppose

Γ−T = {e1,e2, · · · ,e2g},

whereei are edges. ThenT ∪ek has a unique loopγk. The set
of the loops{γ1,γ2, · · · ,γ2g} forms a homology basis ofM.

2.2.2 Computing Fundamental Domain

First we simplify the cut graphΓ, then sliceM along the simplified
cut graph to form the fundamental domaiñM. The algorithm to
construct a fundamental domain is as follows:

1. Compute the valence of each vertexv ∈ Γ, which is the
number of edges connecting withv. All vertices with valence
other than 2 are called nodes. The nodes segmentΓ to
segments.

2. Repeat removing all segments attached to valence 1 nodes,
until all nodes inΓ have valence more than 2.

3. SliceM along the simplified cut graph to get a fundamental
domainM̃. ∂M̃ = s1s2s2 · · ·sn, wheresk is a segment inΓ.

2.2.3 Constructing a Finite Portion of Universal Covering
Space

By gluing finite copies of the fundamental domainM̃ coherently, a
finite portion of the universal covering space can be constructed.

1. SetM̄← M̃, ∂M̄ = ∂M̃ = τ1τ2 · · ·τm.

2. Suppose at current stage, the boundary ofM̄ is

∂M̄ = s1s2 · · ·sn.

Select a segmentsk ∈ ∂M̄, then findτ−j ∈ ∂M̃ such thatsk =

τ−j , and glueM̄ with M̃ by identifyingsk ∈ ∂M̄ with τ j = s−k ∈

∂M̃. Update the boundary of̄M

∂M̄ = s1s2 · · ·sk−1τ j+1τ j+2 · · ·τmτ1τ2 · · ·τ j−1sk+1 · · ·sn.

3. Go through the segment list of∂M̄, if sksk+1 ⊂ ∂M̄ and
sk = s−k+1, then mergesk andsk+1 on M̄. Repeat this process,
until there is no such kind of adjacent dual pair.

4. Repeat step 2 and 3 several times to get a finite portion of the
universal covering space. During the gluing, each copy of the
fundamental domain has a unique identifierk, and denoted as
M̃k.



Each vertex in ¯v∈ M̄ corresponds to a unique vertexv∈M, this
map is the projection mapπ, the correspondences between edges
and faces are induced byπ naturally.

2.2.4 Computing Shortest Loop

Verdière et al. [2005] presented an algorithm to compute a short-
est loop, which has polynomial running time if the lengths ofthe
edges are uniform. They prove that the result of their algorithm is
a shortest loop among all simple loops in its homotopy class.In
this algorithm, each closed curve onM can be lifted as a path in the
universal covering spacēM. The shortest loop in each homotopy
group can be computed by finding the shortest path in the universal
covering space.

2.2.5 Noise Removing

After computing a homology basis{γ1,γ2, · · · ,γ2g} of M, its short-
est homology basis{γ ′1,γ

′
2, · · · ,γ

′
2g} can be computed using the

above algorithms. Each handle ofM corresponds to two loops.
A topology noise (i.e. minute handle) has a loop with very small
length. Topology noise is removed by using the following algo-
rithm:

1. Compute the shortest homology basis{γ ′1,γ
′
2, · · · ,γ

′
2g} of M.

2. Selectγ ′ from the basis with the minimal length.

3. SliceM alongγ , to get two boundary curvesγ+ andγ−.

4. Fill γ+ by a polygon, fill γ− by a polygon, triangulate the
filled mesh to get the resulting mesh̃M.

5. Repeat 2 through 4, until no minute handles are left.

3 Conformal Flattening

In our method, the colon surface is conformally mapped to a planar
rectangle. Because conformal maps have special properties, which
are extremely valuable for real applications:

• Conformal maps areangle preserving(local shape preserv-
ing). Because analytic functions are angle preserving, there-
fore by definition, conformal maps preserve angles. For ex-
ample, any two intersecting curvesγ1 andγ2 are mapped to
f (γ1) on M2 and f (γ2) by a conformal mapf , then the in-
tersection angle betweenγ1 andγ2 equals to the intersection
angle betweenf (γ1) and f (γ2). Polyps still can be identified
based on their shape on the flattened colon image.

• Conformal maps minimize elastic energy (harmonic energy).
One can treatM1 as a rubber surface, the mapping to another
surface will introduce stretching distortion and generatethe
elastic energy. It has been proven [Jost 2002] that conformal
maps minimize the harmonic energy. It is highly desirable in
practice to find the best match between two surfaces which
minimize the distortion.

• Conformal maps areintrinsic. Conformal maps are deter-
mined by the metric, not the embedding. For example, one
can change a surface by rotation, translation, folding, bending
without stretching, the conformal parameterization is invari-
ant. This is valuable for surface registration purpose.

• Conformal maps arestableand easy to compute. Computing
conformal maps is equivalent to solve an elliptic geometric
PDE [Schoen and Yau 1997], which are stable and insensitive

to the noise and the resolution of the data. If two surfaces are
similar to each other, then the corresponding conformal maps
are similar also.

• Conformal parameterization simplifies geometric processing
from 3D to 2D. By parameterizing a surface, we map it to
the planar domain with local shape preservation. Some of the
3D geometric features are carried by the mapping with high
fidelity. For example, figure 9 illustrates the polyp on a colon
surface both in 3D and in the conformal parameter domain. It
is obvious that the shape of the polyp is well preserved on the
plane. It is easier to process in the planar domain than in the
3D domain. Furthermore, many differential operators (such
as the Laplace-Beltramin operator) are in the simplest form
under conformal parameterization.

In the following sections, we first briefly introduce the major
concepts and theorems used in our colon flattening algorithms.
Thorough discussion can be found in Riemann surface theory [Jost
2002]. Then, the detail of the flattening algorithm will be presented.

3.1 Riemann Surface Theory
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φα φβ

φαβ = φβ ◦φ−1
α
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Figure 5: Riemann Surface: The manifold is covered by a set of
charts(Uα ,φα ), whereφα : Uα → R2. If two charts(Uα ,φα ) and
(Uβ ,φβ ) overlap, the transition functionφαβ : R2→ R2 is defined

asφαβ = φβ ◦φ−1
α . If all transition functions are analytic, then the

manifold is a Riemann surface. The atlas{(Uα ,φα)} is a conformal
structure.

A manifold can be treated as a set of open sets inR2 glued co-
herently.

Definition 3.1 A 2-dimensional manifold is a connected Hausdorff
space M for which every point has a neighborhood U that is
homeomorphic to an open set V ofR2. Such a homeomorphism
φ : U → V is called a coordinate chart. An atlas is a family of
charts{(Uα ,φα )}, where Uα constitutes an open covering of M.

Definition 3.2 (Analytic Function) A complex function f: C→
C,(x,y)→ (u,v) is analytic (holomorphic), if it satisfies the follow-
ing Riemann-Cauchy equation

∂u
∂x

=
∂v
∂y

,
∂u
∂y

=−
∂v
∂x

.

A conformal atlas is an atlas with special transition functions.

Definition 3.3 (Riemann Surface) Suppose M is a 2-dimensional
manifold with an atlas{(Uα ,φα )}. If all chart transition functions

φαβ := φβ ◦φ−1
α : φα(Uα

⋂

Uβ )→ φβ (Uα
⋂

Uβ )

are analytic, then the atlas is called a conformal atlas, andM is
called a Riemann surface.



Two conformal atlases arecompatibleif their union is still a con-
formal atlas. All the compatible conformal atlases form anconfor-
mal structureof the manifold as shown in Figure 5. All oriented 2-
dimensional manifolds with Riemannian metrics are Riemannsur-
faces and have conformal structures [Jost 2002], such that on each
chart(Uα ,φα ) with local parameter(u,v), the metric can be repre-
sented asds2 = λ (u,v)(du2 +dv2).

(a) Genus Zero Surface. (b) Genus Two surface.

Figure 6: Holomorphic 1-form examples for genus zero and genus
two surfaces.

3.1.1 Holomorphic 1-form

In order to flatten the surface, we need special differentialforms
defined on the conformal structure.

Definition 3.4 (Holomorphic 1-form) Given a Riemann surface
M with a conformal structureA , a holomorphic 1-formω is a com-
plex differential form, such that on each local chart(U,φ) ∈A ,

ω = f (z)dz,

where f(z) is an analytic function, z= u+ iv is the local parameter
in the complex form.

The holomorphic 1-forms of closed genusg surface form ag
complex dimensional linear space, denoted asΩ(M). It is noted
that a genus zero surface has no holomorphic 1-forms. A conformal
atlas can be constructed by using a basis ofΩ(M). Considering its
geometric intuition, a holomorphic 1-form can be visualized as two
vector fieldsω = (ωx,ωy), such that the curls ofωx andωy equal
zero. Furthermore, one can rotateωx about the normal a right angle
to arrive atωy,

∇×ωx = 0,∇×ωy = 0,ωy = n×ωx.

3.1.2 Conformal Parameterization

Suppose{ω1,ω2, · · · ,ωg} is a basis forΩ(M), whereg is genus of
M. We can find a collection of open disksUα ⊂ M, such thatUα
form an open covering ofM, M ⊂ ∪Uα . We defineφk

α : Uα → C
using the following formula, first we fix a base pointp∈Uα , for
any pointq∈Uα ,

φk
α(q) =

∫

γ
ωk,

where the pathγ : [0,1]→Uα is arbitrary curve connectingp andq
and insideUα , γ ⊂Uα ,γ(0) = p,γ(1) = q. It can be verified that,
we can select aφk

α ,k = 1,2, · · · ,g, such thatφk
α is a bijection, we

simply denote it asφα . Then the atlas{(Uα ,φk
α )} is a conformal

atlas.
For a genus one closed surfaceM, given a holomorphic 1-form

ω ∈Ω(M), we can find 2 special curvesΓ = γ1∪ γ2, such thatM̃ =
M/Γ is a topological disk. Furthermore, on each open setUα , if
the curve

∫

γ1
ω is a horizontal line in the parameter plane, thenγ1

is ahorizontal trajectory. In the current work, we chooseγ2 such
that

∫

γ2
ω is a vertical line in the parameter plane, namely,γ2 is a

vertical trajectory.Γ is called acut graph.
Then by integratingω on M̃, M̃ is conformally mapped to a par-

allelogram, as shown in figure 4. Figure 6 illustrates holomorphic
1-forms on surfaces. The texture coordinates are obtained by inte-
grating the 1-form on the surface.

3.1.3 Conformal Maps

Suppose M1 is a Riemann surface with a conformal atlas
{(Uα ,φα )}, and M2 is another Riemann surface with conformal
atlas{(Vβ ,τβ )}.

Definition 3.5 (Conformal Map) A map f: M1→M2 is aconfor-
mal map, if its restriction on any local charts(Uα ,φα ) and(Vβ ,τβ ),

f β
α := τβ ◦ f ◦φ−1

α : φα (Uα )→ τβ (Vβ )

is analytic.

3.2 Flattening Algorithm

The concepts of Riemann surface and conformal map are defined
using continuous mathematics. Computing conformal parameteri-
zation is equivalent to solving an elliptic partial differential equa-
tion on surfaces.

Unfortunately, in reality, all surfaces are represented bydis-
crete piecewise linear meshes, which are not differentiable in gen-
eral. Fortunately, the solution to the elliptic PDE can be approxi-
mated accurately by piecewise linear functions using finiteelement
method [Reddy 2004]. The convergence and accuracy have been
thoroughly analyzed in finite element field.

Therefore, our algorithm is mainly based on the finite element
method. The key step is to use piecewise linear functions defined
on edges to approximate differential forms. Furthermore, the forms
minimize the harmonic energy, the existence and the uniqueness are
guaranteed by Hodge theory [Schoen and Yau 1997].

3.2.1 Double Covering

In our case, after the topological noise removal, the surface is a
closed genus zero surface. Because the genus zero surface has no
holomorphic 1-form, adouble coveringmethod is used to construct
a genus one surface. Two holes are first punched on the input sur-
face. Then, a mesh M with two boundaries is obtained. The algo-
rithm to construct a closed genus one mesh is described as follows:

1. Make a copy of meshM, denoted asM′, such thatM′ has all
vertices inM, if [v0,v1,v2] is a face inM, then[v1,v0,v2] is a
face ofM′.

2. GlueM andM′ along their boundaries, if an halfedge[v0,v1]
is on the boundary ofM [v0,v1] ∈ ∂M, then[v1,v0] is on the
boundary ofM′. Glue[v0,v1] with [v1,v0].

The resulting mesh is a closed and symmetric, with two layers
coincided. It is noted that general genus one surface can be confor-
mally mapped to a planar parallelogram, but not a rectangle.In our
case, the genus one surface is obtained by double covering method.
The Riemann metric defined on the double covered surface is sym-
metric. Each boundary where we glue two surfaces is mapped to
a straight line. Thus, the denoised genus zero colon surfacecan be
conformally mapped to a rectangle.



3.2.2 Computing Harmonic and Holomorphic 1-form

After getting the homology basis{γ1,γ2, · · · ,γ2g}, it is easy to com-
pute the holomorphic 1-form basis.

1. Selectγk, computeωk : K1→R, form the boundary condition:

∑
e∈γi

ωk(e) = δ k
i ,ωk(∂ f ) = 0,∀ f ∈ K2, (1)

where

δ k
i =

{

1 : i = k
0 : i 6= k

K1 is the edge set ofM andK2 is the face set ofM.

2. Under above linear constraints, computeωk minimizing the
quadratic energy,

E(ωk) = ∑
e∈K1

keω2
k (e), (2)

using linear constrained least square method, whereke is the
weight associated with each edge, suppose the angles in the
adjacent faces against edgee areα,β , thenke = 1

2(cotα +
cotβ ) [Pinkall and Polthier 1993]. Solving this equation is
equivalent to solve Riemann-Cauchy equation using finite el-
ement method.

3. On face[v0,v1,v2], its normaln is computed first, and a unique
vectorv in the same plane ofv0,v1,v2 is obtained by solving
following equations:







< v1−v0,v > = ωk([v1,v0])
< v2−v1,v > = ωk([v2,v1])
< n,v > = 0

(3)

Rotatev aboutn a right angle,v∗ = n×v, then define

ω∗k ([vi ,v j ]) :=< v j −vi ,v
∗ > .

The harmonic 1-form basis is represented by{ω1,ω2, · · · ,ω2g},
and the holomorphic 1-form basis is given by{ω1 + iω∗1 ,ω2 +
iω∗2 , · · · ,ω2g + iω∗2g}.

3.2.3 Conformal Parameterization

A+

A−

B+B− C+

C−

φ(M̃)

Figure 7: Trace horizontal trajectory.

Suppose we have selected a holomorphic 1-formω : K1→ C,
then we define a mapφ : M̃→ C by integration. The algorithm to
trace the horizontal trajectory and the vertical trajectory onφ(M̃) is
as follows:

1. Pick one vertexp∈ M̃ as the base vertex.

2. For any vertexq∈ M̃, find the shortest pathγ ∈D connecting
p to q.

3. Mapq to the complex plane by

φ(q) = ∑
e∈γ

ω(e).

4. Pick a vertexp∈ M, trace the horizontal lineγ on the plane
regionφ(M̃) throughφ(p). If γ hits the boundary ofφ(M̃) at
the pointφ(q), q must be in the cut graphΓ, then there are
two pointsq+,q− on the boundary ofM̃, ∂M̃. Assumeγ hits
φ(q+), then we continue to trace the horizontal line started
from φ(q−), until we return to the starting pointφ(p). The
horizontal trajectory isφ−1(γ).

5. Trace vertical trajectory similar to step 4.

6. The new cut graph̃Γ is the union of the horizontal and vertical
trajectories. Cut the surface alongΓ̃ to getM̃′, and compute
φ̃ . Thenφ̃(M̃′) is a rectangle,̃φ is a conformal map.

4 Direct Volume Rendering

The result of the flattening algorithm is a triangulated rectangle
where the polyps are also flattened. The rendering of the flattened
colon image is crucial for the detection of polyps. Haker et al.
[2000] use color-coded mean curvature to visualize the flattened
colon surface. Although it can show the geometry information of
the 3D colon surface, it is still unnatural for the physicians to de-
tect the polyps. The shape of the polyps is a good clue for polyp
detection. In this section, we describe a direct volume rendering
method to render the flattened colon image. Each pixel of the flat-
tened image is shaded using a fragment program executed on the
GPU, which allows the physician to move and zoom a viewing win-
dow to inspect the entire flattened inner colon surface. The idea of
our rendering algorithm is to map each pixel of the flattened image
back to the 3D colon surface, i.e., the volume space. The pixel is
shaded using volumetric ray-casting algorithm in the volume space.

Figure 8: The colon is divided into N segments.

4.1 Camera Registration

In order to perform the ray-casting algorithm, the ray direction
needs to be determined for each vertex of the 3D colon surfacefirst.
A number of cameras are uniformly placed on the central path of
the colon. The ray direction of a vertex is then determined bythe
nearest camera to that vertex.

Our camera registration algorithm starts with approximating the
central path with a B-spline and resampling it into uniform inter-
vals. Each sampling point represents a camera. Each vertex is then



registered with a sampling point on the central path. The registra-
tion procedure is implemented efficiently by first dividing the 3D
colon surface and central path intoN segments. The registration is
then performed between the correspondent segments of colonand
the central path. The division of the 3D colon is done by classify-
ing the vertices of the flattened 2D mesh into uniformN segments
based on their height. As a consequence, the vertices of the 3D
colon mesh are also divided intoN segments, as shown in Figure
8. We then traceN−1 horizontal lines on the flattened 2D mesh,
which uniformly divide the 2D mesh into N segments. Each traced
horizontal line corresponds to a cross contour on the 3D mesh. In
fact, we do not need to really trace the horizontal lines. Foreach
horizontal line, we only need to compute the intersection points of
the horizontal line and edges intersecting with it. For eachinter-
section point, the corresponding 3D vertex of the 3D colon mesh is
then interpolated. The centroid of these interpolated 3D vertices is
computed and registered with a sampling point of the centralpath.
Therefore, the central path is also divided intoN segments, and
each segment of the 3D colon mesh corresponds to a segment of
the central path. Although the division of the 3D colon surface and
the central path is not uniform as that of the 2D mesh, it does not
affect the accuracy of the camera registration.

For each vertex of a colon surface segment, we find its nearest
sampling point in its corresponding central path segment and the
neighboring two segments. This algorithm is efficient because for
each vertex the comparison is performed only with a small number
of sampling points on the central path. For each vertex, we only
record the B-spline index of the sampling points, instead ofits 3D
coordinates.

4.2 Volumetric Ray-Casting

To generate a high-quality image of the flattened colon, onlycol-
oring the vertices of the polygonal mesh and applying linearin-
terpolation is not sufficient. We need to determine the colorfor
each pixel of the 2D image. This can be performed efficiently us-
ing a fragment program on the GPU. For each vertex of the flat-
tened polygonal mesh, we pass its corresponding 3D coordinates
and camera index through texture coordinates to the fragment pro-
gram. When the flattened polygonal mesh is rendered, each pixel
of the flattened image will obtain its barycentric interpolated 3D
coordinates and camera index. Its 3D position may not be exactly
on the colon surface, but very close to the colon surface. Because
we use a direct volume rendering method to determine the color for
the pixel, it does not affect the image quality. We use the interpo-
lated camera index to look up its corespondent sampling point on
the central path. Then, the ray direction is determined and volu-
metric ray casting algorithm is performed using an opaque transfer
function. By this method, we can determine the color for eachpixel
on the flattened image to generate a high-quality image.

Since our flattened image is colored per-pixel, we can provide
the physician with a high-quality zoom-in view of a suspicious
area on the flattened image in real-time. Because each vertexis
registered with a sampling point on the central path, the flattened
colon image can be easily correlated with the navigation of avir-
tual colonoscopy system. The correlated 3D view of the suspicious
area can be also shown simultaneously.

5 Implementation and Results

We have implemented our conformal flattening and rendering al-
gorithm in C/C++ and run all the experiments on a uni-processor
3.0 GHz Pentium IV PC running Windows XP, with 2G RAM and
NVIDIA Geforce 6800GT graphics board. A large number of colon
CT data sets have been used to test our algorithms. All data sets

have a large number of slices(> 350), and the resolution of each
slice is 512×512. They all exhibit similar results.

5.1 Preprocessing

Before our colon flattening algorithm can be applied, we needto
perform the following tasks to extract the colon surface from the
CT data set. First, a segmentation algorithm [Lakare et al. 2000]
is applied, and a binary mask is generated, which labels the voxels
belonging to the colon interior and the colon wall. This algorithm
ensures a fast and accurate segmentation with the ability toremove
the partial volume effect. Second, the rendering algorithminvolves
the central path of the colon. The central path is automatically ex-
tracted from the CT data set based on an accurate DFB-distance
field with the exact Euclidian values [Wan et al. 2002]. The path
is then approximated by a B-spline curve. Finally, given thebinary
mask and the CT data set, an enhanced dual contouring method
[Zhang et al. 2004] is used to extract the simplified colon surface
while preserving the finest resolution isosurface topology. Since
our algorithm can deal with small handles, we do not need to re-
move these handles in the preprocessing step. All these algorithms
used in the preprocessing step are robust and efficient, and can be
done in seconds on the PC platform.

5.2 Discussion

One of the CT colon datasets that we use has the resolution of
512× 512×460 and contains two polyps. The size of one polyp
is 8× 9 mm, and the size of the other polyp is 3× 4 mm. Five
minute handles are removed from the colon surface automatically,
before applying the flattening algorithm. A flattened image of the
whole colon using our rendering algorithm is shown in Figure10.
The resolution of the flatted image is 196×4000, and it is shown in
three separate pictures. The rendering time for this image is about
300ms. The larger polyp can be inspected from Figure 10(a), which
is surrounded by a circle. However, the smaller polyp located in
Figure 10(c) is hard to recognize. Therefore, in a real medical ap-
plication, the resolution should be at least four times higher than the
one we used in this paper. In fact, we do not need to pre-compute
such a high resolution flattened image. Our rendering algorithm
with the acceleration of the commodity graphics hardware can pro-
vide a real-time high-quality zoom-in function, which allows the
physician to interactively inspect the entire flattened colon.

In Figure 9(a), we show the larger polyp rendered using the volu-
metric ray-casting algorithm by positioning a camera in front of the
polyp. In Figure 9(b), we show a zoom-in view generated by our
rendering algorithm showing the same polyp. We can clearly see
that our flattening algorithm well preserves the shape of thepolyp.
In Figure 9(c) and 9(d), we show a 3D fly-through image and a
zoom-in flattened image, respectively. The smaller polyp can be
clearly recognized in the zoom-in image.

The whole process of the presented algorithm can be completed
in about 30 minutes. Most steps of our algorithm are done within
seconds or minutes. The most time consuming part of our algorithm
is computing the harmonic holomorphic 1-form using the conju-
gate gradient method, which takes about several minutes. The good
thing is that the conjugate gradient method can be accelerated with
the GPU [Bolz et al. 2003].

6 Conclusions

We have presented an efficient colon flattening algorithm using con-
formal structure. Our algorithm is general for all high genus sur-
faces, and does not require the input surface to be a topological
cylinder. The topology noise (i.e., minute handle) is removed auto-
matically by our shortest loop algorithm. We have proven that our
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Figure 9: (a) A close view of a polyp rendered with the volumetric
ray casting, (b) A view generated from the flattened colon image
showing the same polyp. (c) A view contains a small polyp gen-
erated from the navigation of a virtual colonoscopy system.(d) A
view generated from the flattened colon image.

algorithm is angle preserving and the global distortion is minimal.
The shape of the polyps on the flattened colon image is well pre-
served, and can be easily identified by a physician. The flattened
colon image is rendered with a direct volume rendering method ac-
celerated with commodity graphics hardware. We demonstrate that
the conformal colon flattening image cooperates well with the fly-
through virtual colonoscopy system.

We have some on-going research work. Since our flattening al-
gorithm is not limited to a genus one surface, we are in the process
of applying our algorithm to other human organs, such as the heart.
The polyp is well shown in the flattened 2D image. We are exper-
imenting with clustering algorithms and pattern recognizing tech-
niques to detect polyps automatically on the flattened colonimage.
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Figure 10: A flattened image for a whole colon data set is shown
in three images. The bottom of the image (a) is the rectum of the
colon, and the top of the image (c) is the cecum of the colon.


