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(a) Holomorphic 1-form

(b) Conformal virtual colon flattewi

Figure 1: Conformal Virtual Colon Flattening: (a) illustes the holomorphic one-form on the colon surface by textuapping a checker

board image. (b) exhibits the conformal flattening inducgda).

Abstract

We present an efficient colon flattening algorithm using oamfl
structure, which is angle-preserving and minimizes théallalis-
tortion. Moreover, our algorithm is general which can harigh
genus surfaces. First, the colon wall is segmented andogstra
from the CT dataset. The topology noise (i.e., minute hgnidle-
cated and removed automatically. The holomorphic 1-forpaia
of orthogonal vector fields, is then computed on the 3D colon s
face mesh using the conjugate gradient method. The coldacsur
is cut along a vertical trajectory traced using the holorharf-

form. Consequently, the 3D colon surface is conformal médppe
to a 2D rectangle. The flattened 2D mesh is then rendered using
a direct volume rendering method accelerated with the GRUW. O

algorithm is tested with a number of CT datasets of real patho
ical cases, and gives consistent results. We demonstiaaédhe
shape of the polyps is well preserved on the flattened colagés,
which provides an efficient way to enhance the navigation\f-a
tual colonoscopy system.
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1 Introduction

Virtual colonoscopy uses computed tomographic (CT) imagfes
patient’s abdomen and a virtual fly-through visualizatigistem
[Hong et al. 1997] that allows the physician to navigate iith3D
model of the colon searching for polyps, the precursors ntea
Virtual colonoscopy has been successfully demonstratbd toore
convenient and efficient than the real optical colonoscdpgw-
ever, because of the length of the colon, inspecting theseoion
wall is time consuming, and prone to errors. Moreover, plyp-
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Conformal Mapping, Direct Volume Rendering, Vir-

hind folds may be hidden, which results in incomplete examin
tions.

Virtual dissection is an efficient visualization technidaepolyp
detection, in which the entire inner surface of the colorispldyed
as a single 2D image. The straightforward method [BalogH.et a
2002; Wang and Vannier 1995] starts with uniformly resangpli
the colonic central path. At each sampling point, a crostigec
orthogonal to the path is computed. The central path isgsttai
ened and the cross sections are unfolded and remapped iete a n
3D volume. The isosurface is then extracted and renderethidn
method, nearby cross sections may overlap at high curvagire
gions. As a consequence, a polyp might appear twice or bethiss
completely in the flattened image. Balogh et al. [2002] usieaa-
tive method to correct cross sections, using two consexoties at
atime. Wang et al. [1998; 1999] use electrical field linesayated
by a local charged path to generate curved cross sectioteaths
of planar sections. If the complete path is charged, therctbses
sections tend to diverge, avoiding overlaps. However, duine
expansive computation of the global charge, the authorg lonl
cally charge the path, which cannot guarantee that the dunass
sections do not intersect each other any more.

Paik et al. [2000] have used cartographic projections tgepto
the whole solid angle of the camera. This approach sampées th
solid angle of the camera, and maps it onto a cylinder which is
mapped finally to the image. However, this method causesrdist
tions in shape. Bartroli et al. [2001b] have proposed a atktb
move a camera along the central path of the colon. For eacream
position a small cylinder tangent to the path is defined. Rg-
ing at the cylinder axis and being orthogonal to the cylirglgface

are traced. The cylinder is then opened and mapped to a 2D im-

age. The result is a video where each frame shows the pjecti
of a small part of the inner surface of the colon onto the dgin
This avoids the appearance of double polyps since intéossatan
only appear between different frames. However, this amgtrdaes
not provide a complete overview of the colon. They have priese



a new two step technique to deal with double appearance of the
polyps and nonuniform sampling problems [Bartroli et &i02a].
First, curved rays are cast along the negative gradientdafitance
map from the central path of the colon, which return the dista
between the camera and the intersection points on the cottacs.
Then, the height field is unfolded and the nonlinear 2D sgain
applied to achieve area preservation. However, it is ingmrto

this method that the central path is smooth and has as magyrlin
segments as possible.

Haker et al. [2000] have proposed a method based on the dis-
cretization of the Laplace-Beltrami operator to flattendbl®n sur-
face onto the plane in a manner which preserves angles. The fla
tened colon surface is colored according to its mean cuwati
morphological method is used to remove minute handlestiegul
from the segmentation algorithm, because their algoritequires
the input surface to be a topologically open-ended cylintteaw-
ever, the color-coded mean curvature of the extractedciifanot
efficient for polyp identification, and it requires a highlgcarate
and smooth surface mesh to achieve a good mean-curvatore cal
lation. Furthermore, our method maps the colon surface tareap
rectangle, while their method maps the colon surface to aapla
parallelogram.

We propose a novel method for colon flattening by computing
the conformal structure of the surface, represented asd keto-
morphic 1-form basis. It has the following advantages: &)@k
gorithm is rigorous and theoretically solid, which is basedthe
Riemann surface theory and differential geometry; 2)ltaaqral,
so it can handle high genus surfaces; 3)The global distoftmm
the colon surface to the parametric rectangle is minimimdnich is
measured by harmonic energy; 4)Itis angle preserving,esstthpe
of the polyps is preserved; 5)The topology noise is remowed-a
matically by our shortest loop algorithm. Combined with thect
volume rendering method, the flattened 2D colon image pesvid
an efficient way to enhance virtual colonoscopy systems.

The remainder of this paper is organized as follows. Thetekbr
loop algorithm for topological denoising is presented it 2.
The algorithm to flatten the colon surface with conformal piag
is discussed in Section 3. The direct volume rendering #hgar
for the flattened colon surface is described in Section 4. iithe
plementation and experiment results are reported in Sestidn
Section 6, concluding remarks are drawn, and future worlkisf t
subject is summarized.

2 Topological Denoising

The colon surfaces reconstructed from CT dataset usuallg ha
complicated topologies caused by the noise and inaccurfaityeo
reconstruction methods. In general several spurious banalll

be introduced to a surface. This topological noise comfg@gaur
flattening algorithm, and introduces large distortions.

It is challenging to locate these handles and remove them us-
ing special "topology surgery”. El-sana and Varshney []98&e
proposed a topology controlled simplification method folygo-
nal models. Tiny tunnels are identified by rolling a sphereroéll
radius over the object. Guskov and Wood [2001] have predemte
local wave front traversal algorithm to discover the locgldlogies
of the mesh and identify features such as small tunnels. Téshm
is then cut and sealed along non-separating cuts, reduwngpo-
logical complexity of the mesh. These methods are efficiartiy
handle identification. However, we find that handles are ingtin
our colon data sets as shown in Figure 2. Our approach igeliffe
in that it identifies handles by locating the shortest loopéach
homotopy class.

Figure 2: A zoomin view of a colon surface with two handles.

2.1 Handle ldentification

Intuitively, the topology of a closed oriented surface itedmined

by the number of handles (genus). Two closed curveshaneo-
topic if they can deform to each other on the surface. Homotopic
equivalence classes form the so-calfexiotopygroup, which has
finite generators, i.ehomology basisEach handle corresponds to
two generators. A handle can be removed by cutting the handle
along one of its generators, and filling the resulting hokestoown

in Figure 3.

(a) homology basis

(b) topological Surgery

Figure 3: Homology basis and topological surgery.

It is highly desirable to locate the shortest (or optimatddn
eachhomotopygroup [Eric Colin de Verdiere and Lazarus 2005].
This requires the techniquesadvering spaceSuppose tha#l and
M are two surfaces, theiM, 1) is said to be a covering spaceMf
if 1: M — M is a surjective continuous map with evgrge M hav-
ing an open neighborhodd such that every connected component
m+(U) is mapped homeomorphically ontb by . If M is sim-
ply connected, then it is saiduniversal covering spacef M. A
simply connected regioM C M is called afundamental domain
if the restriction ofrt on M is bijective. Intuitively, one can slice
M along some curve set (cut graph) to obtain a topological @sk
fundamental domain), and glue fundamental domains cotigrten
form the universal covering space.

For any pointp € M, its preimages are the discrete set (p) =
{Po, P1, P2, P3-- -} C M. If y is a curve connectingg and py in the
universal covering spadd, theny, = m(\k) is a closed loop oM.
By going through all end pointpy, y goes through all homotopy
classes. In order to find the shortest lgg[in each homotopy class,
we can find the shortest paghin the universal covering space in-
stead. Figure 4 demonstrates the concepts of fundamentaido
and universal covering space using a genus one surfacdush il
trates the idea of lifting a loop to a path and converting thartest
loop problem to the shortest path problem.



2.2 Denoising Algorithm

Given a closed meshl, we want to compute its cut gragh its
homology basis, its fundamental domah and find the shortest
loop homotopic to the base loops. In the following discussive
assume the surfaces are represented by meshes using #dghalf
data structure. We uskto denote a faceg for a halfedgeg™ for
the dual halfedge o, M for mesh,M for the fundamental domain
of M, M for the universal covering space Mdf.

2.2.1 Computing Cut Graph and Homology Basis

The algorithm to compute theut graphandhomology basigor a
genusg surfaceM is as follows:

1. Arbitrarily select a seed fade € M, letM — M/ f1, andM «—

f1. Suppose f; = e;ese3, thendM = e eves.

. Suppose at current stage

dM:elQ:va"l

Choose a halfedge, from the boundary ofi. Supposes, is
associated with a facee M, df = g_ 1112, then gluef with
M by identifyinge, € df ande € OM , letM «— M Ug, f and
M «— M/f. Update the boundaries

aM =€16, -+, &-1,T1,T2,8+1, ", €n

. Repeat step 2, untM = 0. The faces are removed frolh
one by one, the first one is denotedfasthe second one i&
and so on.

. dM is a loop composed by a sequence of halfedges, then all

the edges whose halfedges ar@M form the cut graphi.
. Compute a spanning tr@eof graphl". Suppose
r-T= {91762:"'762g}7

whereg are edges. ThefiU e has a unique loop. The set
of the loops{y1, o, -, yog} forms a homology basis d{l.

1.
2.

3.

Figure 4: Topology Concepts Two curvquz on a surfaceM form acut graph M is sliced open along the cut graph to become a
fundamental domaiM, ¥ is mapped tcy andy . By gluing many copies dfi such thaiy+ is glued W|thy
M can be obtained: M — M is the projection map. Any poirpi on M has a discrete preimage setl( )
curves throughp on M are lifted as curve segments connecting two pointaih(p), e.g. y1 is lifted asy, y» is lifted asy,. The shortest
loops onM correspond to the shortest pathn

, theuniversal covering space
{p_07 517 p_27 o } Any closed

2.2.2 Computing Fundamental Domain

First we simplify the cut graph, then sliceM along the simplified
cut graph to form the fundamental domah The algorithm to
construct a fundamental domain is as follows:

1. Compute the valence of each vertexc I', which is the

number of edges connecting withAll vertices with valence
other than 2 are called nodes. The nodes segrhetd
segments.

. Repeat removing all segments attached to valence 1 nodes,

until all nodes in" have valence more than 2.

. SliceM along the simplified cut graph to get a fundamental

domainM. dM = ;5% - - - &, Wheresy is a segment ift.

2.2.3 Constructing a Finite Portion of Universal Covering

Space

By gluing finite copies of the fundamental domaihcoherently, a
finite portion of the universal covering space can be constrl

SetM «— M, dM = M = T1T- - - T
Suppose at current stage, the boundaMcirﬁ
OM =1 S
Select a segmers € AM, then findr’ € M such thas, =

—,and gluel\/l with M by |dent|fy|ngsk € M with Tj=9 €
0M Update the boundary ofl
dM = 5152"'S|<71Tj+1Tj+2"'TmTlTZ"'Tj—15|<+1"'$1-

Go through the segment list dM,_if SSkr1 C M and
S =S¢, then merge ands;; onM. Repeat this process,
until there is no such kind of adjacent dual pair.

. Repeat step 2 and 3 several times to get a finite portioreof th

universal covering space. During the gluing, each copy ef th
fundamental domain has a unique identikgand denoted as
M-



Each vertex irv € M corresponds to a unique vertex M, this
map is the projection map, the correspondences between edges
and faces are induced bynaturally.

2.2.4 Computing Shortest Loop

Verdiére et al. [2005] presented an algorithm to computbaats
est loop, which has polynomial running time if the lengthghef
edges are uniform. They prove that the result of their allgoriis

a shortest loop among all simple loops in its homotopy cldss.
this algorithm, each closed curve bhcan be lifted as a path in the
universal covering spadd. The shortest loop in each homotopy
group can be computed by finding the shortest path in the tgale
covering space.

2.2.5 Noise Removing

After computing a homology basig, 2, - -, yog} of M, its short-
est homology basi:ﬂ/l,y/z,---,;/zg} can be computed using the
above algorithms. Each handle Bf corresponds to two loops.
A topology noise (i.e. minute handle) has a loop with very lkma
length. Topology noise is removed by using the followingoalg
rithm:

1. Compute the shortest homology ba§, y5, -+, Yo} Of M.
2. Selecty from the basis with the minimal length.
3. SliceM alongy, to get two boundary curvgs™ andy—.
4. Fill y* by a polygon, filly~ by a polygon, triangulate the
filled mesh to get the resulting mebh
5. Repeat 2 through 4, until no minute handles are left.
3 Conformal Flattening

In our method, the colon surface is conformally mapped t@aag
rectangle. Because conformal maps have special propenstiésh
are extremely valuable for real applications:

e Conformal maps arangle preservinglocal shape preserv-
ing). Because analytic functions are angle preserving, there-
fore by definition, conformal maps preserve angles. For ex-
ample, any two intersecting curvgs and y» are mapped to
f(y1) on My and f(y2) by a conformal magf, then the in-
tersection angle betweaa and > equals to the intersection
angle betweeri (y1) and f (y2). Polyps still can be identified
based on their shape on the flattened colon image.

Conformal maps minimize elastic enerdyatmonic energy

One can treal; as a rubber surface, the mapping to another
surface will introduce stretching distortion and genethi
elastic energy. It has been proven [Jost 2002] that conforma
maps minimize the harmonic energy. It is highly desirable in
practice to find the best match between two surfaces which
minimize the distortion.

Conformal maps aré@ntrinsic. Conformal maps are deter-
mined by the metric, not the embedding. For example, one
can change a surface by rotation, translation, foldinggdimen
without stretching, the conformal parameterization isanv
ant. This is valuable for surface registration purpose.

Conformal maps arstableand easy to compute. Computing
conformal maps is equivalent to solve an elliptic geometric
PDE [Schoen and Yau 1997], which are stable and insensitive

to the noise and the resolution of the data. If two surfaces ar
similar to each other, then the corresponding conformalsmap
are similar also.

Conformal parameterization simplifies geometric processi
from 3D to 2D. By parameterizing a surface, we map it to
the planar domain with local shape preservation. Some of the
3D geometric features are carried by the mapping with high
fidelity. For example, figure 9 illustrates the polyp on a colo
surface both in 3D and in the conformal parameter domain. It
is obvious that the shape of the polyp is well preserved on the
plane. It is easier to process in the planar domain than in the
3D domain. Furthermore, many differential operators (such
as the Laplace-Beltramin operator) are in the simplest form
under conformal parameterization.

In the following sections, we first briefly introduce the nmajo
concepts and theorems used in our colon flattening algosithm
Thorough discussion can be found in Riemann surface thdost [
2002]. Then, the detail of the flattening algorithm will begented.

3.1 Riemann Surface Theory

@ (Ua)

. @ (Up)

Figure 5: Riemann Surface: The manifold is covered by a set of
charts(Uq, ¢ ), Whereg@y : Ug — R2. If two charts(Ug, ¢y ) and
(Ug. @) overlap, the transition functiom, s : R — R? is defined
as@up = @go @y L. If all transition functions are analytic, then the

manifold is a Riemann surface. The at{@8q, ¢ ) } is a conformal
structure.

Pup = P

A manifold can be treated as a set of open se®R3mlued co-
herently.

Definition 3.1 A 2-dimensional manifold is a connected Hausdorff
space M for which every point has a neighborhood U that is
homeomorphic to an open set V Rf. Such a homeomorphism
¢:U —V is called a coordinate chart. An atlas is a family of
charts{(Uq, @)}, where U constitutes an open covering of M.

Definition 3.2 (Analytic Function) A complex function f C —
C,(x,y) — (u,v) is analytic (holomorphic), if it satisfies the follow-
ing Riemann-Cauchy equation

ou_ovou_ ov
ox  ady’dy  ox
A conformal atlas is an atlas with special transition funis.

Definition 3.3 (Riemann Surface) Suppose M is a 2-dimensional
manifold with an atlag (Uq, @) }. If all chart transition functions

Gup = B0 P ga(Ua[\Up) — @5(Ua(\Up)

are analytic, then the atlas is called a conformal atlas, aids
called a Riemann surface.



Two conformal atlases ammpatibldf their union is still a con-
formal atlas. All the compatible conformal atlases formcanfor-
mal structureof the manifold as shown in Figure 5. All oriented 2-
dimensional manifolds with Riemannian metrics are Riemsum
faces and have conformal structures [Jost 2002], such thaach
chart(Uq, @y ) with local parametefu, v), the metric can be repre-

sented asls” = A (u,v)(dW? +dV2).

(a) Genus Zero Surface.

(b) Genus Two surface.

Figure 6: Holomorphic 1-form examples for genus zero andigen
two surfaces.

3.1.1 Holomorphic 1-form

In order to flatten the surface, we need special differeftiahs
defined on the conformal structure.

Definition 3.4 (Holomorphic 1-form) Given a Riemann surface
M with a conformal structurey, a holomorphic 1-fornmw is a com-
plex differential form, such that on each local chét, ¢) € <7,

w=f(z)dz

where f(2) is an analytic function, z u+iv is the local parameter
in the complex form.

The holomorphic 1-forms of closed gengssurface form ag
complex dimensional linear space, denoted2M). It is noted
that a genus zero surface has no holomorphic 1-forms. A corafo
atlas can be constructed by using a basi©@¥). Considering its
geometric intuition, a holomorphic 1-form can be visuaize two
vector fieldsw = (wx, wy), such that the curls afy and wy equal
zero. Furthermore, one can rotatgabout the normal a right angle
to arrive atey,

Oxax=00xawy=0w=nXux.

3.1.2 Conformal Parameterization

Suppos€(wi, ap, - -, Wy} is a basis foQQ(M), whereg is genus of
M. We can find a collection of open diskk, C M, such thatyy
form an open covering d1, M C UUy,. We define(p‘g Uy —C
using the following formula, first we fix a base poipte Uq, for
any pointq € Uq,

o(a) = /y W

where the patly : [0,1] — Uq is arbitrary curve connecting andq
and insidelq, ¥ C Ug, ¥(0) = p,y(1) = g. It can be verified that,
we can select @£,k = 1,2 ---,g, such thatg is a bijection, we
simply denote it agg,. Then the atlag(Uq, @)} is a conformal
atlas.

For a genus one closed surfade given a holomorphic 1-form
w € Q(M), we can find 2 special curvés= y; U y», such thaM =
M/I is a topological disk. Furthermore, on each openlkgt if
the curvefyl w is a horizontal line in the parameter plane, then

is ahorizontal trajectory In the current work, we choose such
tha’[‘[yz w is a vertical line in the parameter plane, namegyis a
vertical trajectoryr’ is called acut graph

Then by integratingo on M, M is conformally mapped to a par-
allelogram, as shown in figure 4. Figure 6 illustrates holgwhix
1-forms on surfaces. The texture coordinates are obtaipécté-
grating the 1-form on the surface.

3.1.3 Conformal Maps

SupposeM; is a Riemann surface with a conformal atlas
{(Ua, @)}, and My is another Riemann surface with conformal

atlas{(Vg, 1)}

Definition 3.5 (Conformal Map) A map f: M; — My is aconfor-
mal map if its restriction on any local chartflq, @) and(Vg, 1g),

8 =150 fogr: @u(Ua) — T5(Vp)

is analytic.

3.2 Flattening Algorithm

The concepts of Riemann surface and conformal map are defined
using continuous mathematics. Computing conformal pateine
zation is equivalent to solving an elliptic partial diffet&al equa-
tion on surfaces.

Unfortunately, in reality, all surfaces are representeddisy
crete piecewise linear meshes, which are not differergtiabben-
eral. Fortunately, the solution to the elliptic PDE can bpragi-
mated accurately by piecewise linear functions using figléenent
method [Reddy 2004]. The convergence and accuracy have been
thoroughly analyzed in finite element field.

Therefore, our algorithm is mainly based on the finite elemen
method. The key step is to use piecewise linear functionseldfi
on edges to approximate differential forms. Furthermdre forms
minimize the harmonic energy, the existence and the uniegseare
guaranteed by Hodge theory [Schoen and Yau 1997].

3.2.1 Double Covering

In our case, after the topological noise removal, the sarfaca
closed genus zero surface. Because the genus zero suriane ha
holomorphic 1-form, @ouble coveringnethod is used to construct

a genus one surface. Two holes are first punched on the input su
face. Then, a mesh M with two boundaries is obtained. The-algo
rithm to construct a closed genus one mesh is describedles$ol

1. Make a copy of mesNl, denoted as/’, such that’ has all
vertices inM, if [vp,Vv1, Vo] is a face inM, then|vy, vp, o] is a
face ofM’.

2. GlueM andM’ along their boundaries, if an halfedge, v1]
is on the boundary d¥ [vg,v1] € M, then|vy, Vo] is on the
boundary oM’. Glue|vo,Vvy] with [v1,Vp].

The resulting mesh is a closed and symmetric, with two layers
coincided. It is noted that general genus one surface canrifere
mally mapped to a planar parallelogram, but not a rectargleur
case, the genus one surface is obtained by double coveritigpde
The Riemann metric defined on the double covered surfaceris sy
metric. Each boundary where we glue two surfaces is mapped to
a straight line. Thus, the denoised genus zero colon suctatbe
conformally mapped to a rectangle.



3.2.2 Computing Harmonic and Holomorphic 1-form

After getting the homology basiga, y»,- - -, yog}, itis easy to com-
pute the holomorphic 1-form basis.

1. Selecty, computeny : K1 — R, form the boundary condition:

Y (€)= 8 w(af) =0,¥f €Ky, (1)
ecy
where ‘
1 i=
qk:{ 0 i£k

K1 is the edge set dfl andKj is the face set ofl.

2. Under above linear constraints, compuie minimizing the
quadratic energy,

E(w) = Zz ke (), @

using linear constrained least square method, wkeie the

weight associated with each edge, suppose the angles in th

adjacent faces against edgarea, 3, thenke = %(cota +
cotf) [Pinkall and Polthier 1993]. Solving this equation is
equivalent to solve Riemann-Cauchy equation using finite el
ement method.

3. Onfacdvp, V1, V2], its normalnis computed first, and a unique
vectorv in the same plane ofy, vy, V> is obtained by solving
following equations:

<Vi—Vo,V>
<Vp—Vi3,V>

<nyv>

x([Vv1,Vvo])

Wx( [V, V1)) 3)
0

Rotatev aboutn a right angley* = n x v, then define
(v, vi]) =< vy =i, v >

The harmonic 1-form basis is represented{oy, w, - - -, apg},
and the holomorphic 1-form basis is given ¥y + iwj, wp +

05, -, topg + 1603y ).

3.2.3 Conformal Parameterization

Figure 7: Trace horizontal trajectory.

Suppose we have selected a holomorphic 1-fasmK; — C,
then we define a map : M — C by integration. The algorithm to
trace the horizontal trajectory and the vertical trajectwr @(M) is
as follows:

1. Pick one vertex € M as the base vertex.

2. For any vertex € M, find the shortest patjie D connecting
ptoq.

3. Mapqto the complex plane by

o(@) = wle).
ecy

4. Pick a vertexp € M, trace the horizontal ling on the plane
region@(M) throughg(p). If y hits the boundary ofp(M) at
the pointg(q), g must be in the cut graph, then there are
two pointsq™, g~ on the boundary o, dM. Assumey hits
©(g™), then we continue to trace the horizontal line started
from @(g™), until we return to the starting poirg(p). The
horizontal trajectory isp~(y).

5. Trace vertical trajectory similar to step 4.

6. The new cut grapfi is the union of the horizontal and vertical
trajectories. Cut the surface alongio getM’, and compute
@. Thengp(M') is a rectangleg is a conformal map.

4 Direct Volume Rendering

®rhe result of the flattening algorithm is a triangulated aagte

where the polyps are also flattened. The rendering of theffiatt
colon image is crucial for the detection of polyps. Haker let a
[2000] use color-coded mean curvature to visualize theefiet
colon surface. Although it can show the geometry informratid
the 3D colon surface, it is still unnatural for the physigan de-
tect the polyps. The shape of the polyps is a good clue forppoly
detection. In this section, we describe a direct volume egngd
method to render the flattened colon image. Each pixel of #te fl
tened image is shaded using a fragment program executeceton th
GPU, which allows the physician to move and zoom a viewing win
dow to inspect the entire flattened inner colon surface. @ha bf
our rendering algorithm is to map each pixel of the flattemeage
back to the 3D colon surface, i.e., the volume space. Thd jgixe
shaded using volumetric ray-casting algorithm in the vaapace.

Figure 8: The colon is divided into N segments.

4.1 Camera Registration

In order to perform the ray-casting algorithm, the ray dimt
needs to be determined for each vertex of the 3D colon sufifate
A number of cameras are uniformly placed on the central path o
the colon. The ray direction of a vertex is then determinedhay
nearest camera to that vertex.

Our camera registration algorithm starts with approxingthe
central path with a B-spline and resampling it into unifonmber-
vals. Each sampling point represents a camera. Each verthan



registered with a sampling point on the central path. Thesteg
tion procedure is implemented efficiently by first dividirtget3D
colon surface and central path iftbsegments. The registration is
then performed between the correspondent segments of anbbn
the central path. The division of the 3D colon is done by dfgss
ing the vertices of the flattened 2D mesh into unifdihsegments
based on their height. As a consequence, the vertices ofl3he 3
colon mesh are also divided intd segments, as shown in Figure
8. We then trac&\l — 1 horizontal lines on the flattened 2D mesh,
which uniformly divide the 2D mesh into N segments. Eachecdac
horizontal line corresponds to a cross contour on the 3D miesh
fact, we do not need to really trace the horizontal lines. dawh
horizontal line, we only need to compute the intersectiomtgoof
the horizontal line and edges intersecting with it. For eiatér-
section point, the corresponding 3D vertex of the 3D coloshris
then interpolated. The centroid of these interpolated 3ffices is
computed and registered with a sampling point of the cepati.
Therefore, the central path is also divided itNosegments, and

have a large number of slicés- 350), and the resolution of each
slice is 512x 512. They all exhibit similar results.

5.1 Preprocessing

Before our colon flattening algorithm can be applied, we need
perform the following tasks to extract the colon surfacenfrthe

CT data set. First, a segmentation algorithm [Lakare etGOOP

is applied, and a binary mask is generated, which labelsdkels
belonging to the colon interior and the colon wall. This aition
ensures a fast and accurate segmentation with the abiligntove

the partial volume effect. Second, the rendering algoriitwolves

the central path of the colon. The central path is automigtiea-
tracted from the CT data set based on an accurate DFB-déstanc
field with the exact Euclidian values [Wan et al. 2002]. Théhpa

is then approximated by a B-spline curve. Finally, giventilmary
mask and the CT data set, an enhanced dual contouring method
[Zhang et al. 2004] is used to extract the simplified colorfesag

each segment of the 3D colon mesh corresponds to a segment ofwhile preserving the finest resolution isosurface topalo§nce

the central path. Although the division of the 3D colon scefand
the central path is not uniform as that of the 2D mesh, it dags n
affect the accuracy of the camera registration.

our algorithm can deal with small handles, we do not need-o re
move these handles in the preprocessing step. All thesetalgs
used in the preprocessing step are robust and efficient, amte

For each vertex of a colon surface segment, we find its nearestdone in seconds on the PC platform.

sampling point in its corresponding central path segmedttha
neighboring two segments. This algorithm is efficient beeafor
each vertex the comparison is performed only with a smallbem
of sampling points on the central path. For each vertex, wg on
record the B-spline index of the sampling points, insteailso3D
coordinates.

4.2 Volumetric Ray-Casting

To generate a high-quality image of the flattened colon, aoly
oring the vertices of the polygonal mesh and applying linear
terpolation is not sufficient. We need to determine the ctdor
each pixel of the 2D image. This can be performed efficiensly u
ing a fragment program on the GPU. For each vertex of the flat-
tened polygonal mesh, we pass its corresponding 3D codedina
and camera index through texture coordinates to the fragpren
gram. When the flattened polygonal mesh is rendered, eaeh pix
of the flattened image will obtain its barycentric intergeth 3D
coordinates and camera index. Its 3D position may not betlgxac
on the colon surface, but very close to the colon surface atsx
we use a direct volume rendering method to determine the fmlo
the pixel, it does not affect the image quality. We use therpu-
lated camera index to look up its corespondent samplingt oin
the central path. Then, the ray direction is determined aid-v
metric ray casting algorithm is performed using an opacaestfier
function. By this method, we can determine the color for gzigél

on the flattened image to generate a high-quality image.

Since our flattened image is colored per-pixel, we can pevid
the physician with a high-quality zoom-in view of a suspiwo
area on the flattened image in real-time. Because each vertex
registered with a sampling point on the central path, théefted
colon image can be easily correlated with the navigation waf-a
tual colonoscopy system. The correlated 3D view of the siss
area can be also shown simultaneously.

5 Implementation and Results

We have implemented our conformal flattening and rendering a
gorithm in C/C++ and run all the experiments on a uni-progess
3.0 GHz Pentium IV PC running Windows XP, with 2G RAM and
NVIDIA Geforce 6800GT graphics board. A large number of colo
CT data sets have been used to test our algorithms. All di&ga se

5.2 Discussion

One of the CT colon datasets that we use has the resolution of
512x 512x 460 and contains two polyps. The size of one polyp
is 8x 9 mm, and the size of the other polyp is<3 mm. Five
minute handles are removed from the colon surface autoatlgic
before applying the flattening algorithm. A flattened imad¢he
whole colon using our rendering algorithm is shown in FigliGe
The resolution of the flatted image is 19@000, and it is shown in
three separate pictures. The rendering time for this imagéout
300ms. The larger polyp can be inspected from Figure 10w

is surrounded by a circle. However, the smaller polyp latate
Figure 10(c) is hard to recognize. Therefore, in a real nadip-
plication, the resolution should be at least four times arghan the
one we used in this paper. In fact, we do not need to pre-camput
such a high resolution flattened image. Our rendering alyaori
with the acceleration of the commodity graphics hardwarepra-
vide a real-time high-quality zoom-in function, which alle the
physician to interactively inspect the entire flattenednol

In Figure 9(a), we show the larger polyp rendered using thevo
metric ray-casting algorithm by positioning a camera imfrof the
polyp. In Figure 9(b), we show a zoom-in view generated by our
rendering algorithm showing the same polyp. We can cleaty s
that our flattening algorithm well preserves the shape optitgp.

In Figure 9(c) and 9(d), we show a 3D fly-through image and a
zoom-in flattened image, respectively. The smaller polyp loa
clearly recognized in the zoom-in image.

The whole process of the presented algorithm can be condplete
in about 30 minutes. Most steps of our algorithm are doneimwith
seconds or minutes. The most time consuming part of ourighgor
is computing the harmonic holomorphic 1-form using the genj
gate gradient method, which takes about several minutesgdbd
thing is that the conjugate gradient method can be accetbrith
the GPU [Bolz et al. 2003].

6 Conclusions

We have presented an efficient colon flattening algorithmgison-
formal structure. Our algorithm is general for all high gersur-
faces, and does not require the input surface to be a topalogi
cylinder. The topology noise (i.e., minute handle) is regtauto-
matically by our shortest loop algorithm. We have prover tha
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Figure 10: A flattened image for a whole colon data set is shown
in three images. The bottom of the image (a) is the rectumef th
colon, and the top of the image (c) is the cecum of the colon.



